Results 81 to 90 of about 5,452,327 (324)
Transport of dangerous biological materials [PDF]
With the financial support of Internal Security Fund Police Programme European Commission Directorate General Home Affairs. This project has been founded with support from the European Commission. This publication reflects the views only of the authors, and European Commission cannot be held responsible for any use which may be made of the information ...
Michalski, Aleksander +5 more
openaire +3 more sources
Evolutionary interplay between viruses and R‐loops
Viruses interact with specialized nucleic acid structures called R‐loops to influence host transcription, epigenetic states, latency, and immune evasion. This Perspective examines the roles of R‐loops in viral replication, integration, and silencing, and how viruses co‐opt or avoid these structures.
Zsolt Karányi +4 more
wiley +1 more source
Ion transport through biological channels
The transport of ions across single-molecule protein nanochannels is important both in the biological context and in proposed nanotechnological applications. Here we discuss these systems from the perspective of non-equilibrium physics, and in particular, whether the concepts underlying the physics of diffusive and electrokinetic ...
Faraudo, Jordi, Aguilella Arzo, Marcel
openaire +3 more sources
Extracellular vesicles (EVs) mediate intercellular communication in tumor immune microenvironments. However, their role in B‐cell malignancies remains poorly defined, owing to biological complexity and technical challenges in EV isolation and analysis.
Daniel Bachurski, Michael Hallek
wiley +1 more source
Exposure to common noxious agents (1), including allergens, pollutants, and micro‐nanoplastics, can cause epithelial barrier damage (2) in our body's protective linings. This may trigger an immune response to our microbiome (3). The epithelial barrier theory explains how this process can lead to chronic noncommunicable diseases (4) affecting organs ...
Can Zeyneloglu +17 more
wiley +1 more source
Calcium carbonate (CaCO3) is an incredibly abundant mineral on Earth, with over 90% of it being found in the lithosphere. To address the CO2 crisis and combat ocean acidification, it is essential to produce more CaCO3 using various synthetic methods ...
Jackson Comes +4 more
doaj +1 more source
From omics to AI—mapping the pathogenic pathways in type 2 diabetes
Integrating multi‐omics data with AI‐based modelling (unsupervised and supervised machine learning) identify optimal patient clusters, informing AI‐driven accurate risk stratification. Digital twins simulate individual trajectories in real time, guiding precision medicine by matching patients to targeted therapies.
Siobhán O'Sullivan +2 more
wiley +1 more source
Knowing how proteases recognise preferred substrates facilitates matching proteases to applications. The S1′ pocket of protease EA1 directs cleavage to the N‐terminal side of hydrophobic residues, particularly leucine. The S1′ pocket of thermolysin differs from EA's at only one position (leucine in place of phenylalanine), which decreases cleavage ...
Grant R. Broomfield +3 more
wiley +1 more source
Exploring lipid diversity and minimalism to define membrane requirements for synthetic cells
Designing the lipid membrane of synthetic cells is a complex task, in which its various roles (among them solute transport, membrane protein support, and self‐replication) should all be integrated. In this review, we report the latest top‐down and bottom‐up advances and discuss compatibility and complexity issues of current engineering approaches ...
Sergiy Gan +2 more
wiley +1 more source
A physical derivation of high-flux ion transport in biological channel via quantum ion coherence
Biological ion channels usually conduct the high-flux transport of 107 ~ 108 ions·s− 1; however, the underlying mechanism is still lacking. Here, by applying the KcsA potassium channel as a typical example, and performing multitimescale molecular ...
Yue Wang +5 more
doaj +1 more source

