Results 91 to 100 of about 338,983 (344)

Biotin-Tagged Polysaccharide Vesicular Nanocarriers for Receptor-Mediated Anticancer Drug Delivery in Cancer Cells.

open access: yesBiomacromolecules, 2018
Biotin-conjugated multistimuli-responsive polysaccharide vesicular nanocarriers are designed and developed, for the first time, to accomplish receptor-mediated endocytosis in cancer cells and to deliver anticancer drugs to intracellular compartments. For
N. Deshpande, M. Jayakannan
semanticscholar   +1 more source

Nano‐Engineered Titanium Implants Loaded With Gingival Fibroblasts‐Derived Microvesicles Enhance Early Osseointegration And Soft Tissue Attachment In Vivo

open access: yesAdvanced Healthcare Materials, EarlyView.
Our study showed that human primary gingival fibroblast–derived microvesicles on nano‐engineered titanium implants promote early osseointegration and soft‐tissue attachment in vivo. ABSTRACT Titanium dental implants require both reliable osseointegration and peri‐implant soft tissue seal formation to ensure long‐term success. While osseointegration has
Pingping Han   +10 more
wiley   +1 more source

Biotin-thiamine-responsive basal ganglia disease

open access: yesRadiopaedia.org, 2018
Biotin-thiamine-responsive basal ganglia disease is a disorder that affects the nervous system, including a group of structures in the brain called the basal ganglia, which help control movement.
Daniel Bell, Alice Willison
semanticscholar   +1 more source

PiP‐Plex: A Particle‐in‐Particle System for Multiplexed Quantification of Proteins Secreted by Single Cells

open access: yesAdvanced Materials, EarlyView.
Detecting proteins secreted by a single cell while retaining its viability remains challenging. A particles‐in‐particle (PiPs) system made by co‐encapsulating barcoded microparticles (BMPs) with a single cell inside an alginate hydrogel particle is introduced.
Félix Lussier   +10 more
wiley   +1 more source

Biotin

open access: yesAdvances in Nutrition
Cydne A Perry, Tammy A Butterick
  +7 more sources

The Space Within: How Architected Voids Promote Tissue Formation

open access: yesAdvanced Materials, EarlyView.
This review explores the role of void spaces in tissue engineering scaffolds and examines four key methods for introducing porosity into hydrogels at different scales. It discusses sacrificial templating, microgels, phase separation, and 3D printing, highlighting principles, advantages, and limitations. It also addresses emerging strategies integrating
Anna Puiggalí‐Jou   +3 more
wiley   +1 more source

Bacteria‐Responsive Nanostructured Drug Delivery Systems for Targeted Antimicrobial Therapy

open access: yesAdvanced Materials, EarlyView.
Bacteria‐responsive nanocarriers are designed to release antimicrobials only in the presence of infection‐specific cues. This selective activation ensures drug release precisely at the site of infection, avoiding premature or indiscriminate release, and enhancing efficacy.
Guillermo Landa   +3 more
wiley   +1 more source

Kelvin Probe Force Microscopy in Bionanotechnology: Current Advances and Future Perspectives

open access: yesAdvanced Materials, EarlyView.
Kelvin probe force microscopy (KPFM) enables the nanoscale mapping of electrostatic surface potentials. While widely applied in materials science, its use in biological systems remains emerging. This review presents recent advances in KPFM applied to biological samples and provides a critical perspective on current limitations and future directions for
Ehsan Rahimi   +4 more
wiley   +1 more source

Case report: Two siblings with very late onset of holocarboxylase synthase deficiency and a mini-review

open access: yesFrontiers in Genetics
Holocarboxylase synthase (HCS) deficiency is an extremely rare metabolic disorder typically presenting as severe neonatal metabolic acidosis, lethargy, hypotonia, vomiting, and seizures.
Margaux Gaschignard   +9 more
doaj   +1 more source

Emergent Motility of Self‐Organized Particle‐Giant Unilamellar Vesicle Assembly

open access: yesAdvanced Materials, EarlyView.
Giant unilamellar vesicles (GUVs), when combined with silica particles under alternating electric fields, spontaneously self‐assemble into motile structures. Asymmetric particle decoration induces fluid flows that propel the assemblies, enabling persistent motion and reversible control.
Selcan Karaz   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy