Results 71 to 80 of about 312,654 (302)
The repair and regeneration of brain tissue faces both biological and technical challenges. Injectable bioscaffolds offer new opportunities to stimulate tissue regrowth in the brain by recruiting neural stem cells. Here, the translational issues are reviewed that need to be address to advance this promising new therapeutic approach from the bench to ...
Michel Modo, Alena Kisel
wiley +1 more source
Bioprinting Organs—Science or Fiction?—A Review From Students to Students
Bioprinting artificial organs has the potential to revolutionize the medical field. This is a comprehensive review of the bioprinting workflow delving into the latest advancements in bioinks, materials and bioprinting techniques, exploring the critical stages of tissue maturation and functionality.
Nicoletta Murenu +18 more
wiley +1 more source
Background This study investigated whether intraoperative blood salvage was associated with coagulation disorder diagnosed by conventional coagulation tests and thromboelastography (TEG) after cardiopulmonary bypass (CPB).
Masahiro Morinaga +4 more
doaj +1 more source
Growth Hormone‐Loaded 3D Printed Silk Fibroin‐Cellulose Dressings for Ischemic Wounds
3D‐printed wound dressings combining carboxymethyl cellulose, silk fibroin, and growth hormone accelerate healing in diabetic ulcers. These bioactive, customizable dressings enhance angiogenesis, cellular proliferation, and immune modulation. Proteomic analysis reveals activation of regenerative pathways and reduced fibrosis, highlighting their ...
Maria Pita‐Vilar +7 more
wiley +1 more source
A vapor‐based porous coating applied within nitinol tubes demonstrated complete suppression of cellular and tissue ingrowth, overcoming a major limitation of implantable interstitial fluid collection devices. Molecular channeling and diffusion are analyzed with probe molecules, showing reliable transport in vitro and in vivo. The coating also achieved >
Yu‐Ming Chang +8 more
wiley +1 more source
A novel method that combines 3D printing and organ‐on‐chip technology enables the creation of hollow channels lined with endothelial cells through a fibroblast‐populated connective tissue matrix. The model supports stable metabolic culture conditions, angiogenic sprouting, and immune cell migration, thereby demonstrating an easy and versatile method to
Jonas Jäger +7 more
wiley +1 more source
Adsorbed polymer conjugates to adaptively inhibit blood coagulation activation by medical membranes
Tina Helmecke +5 more
openalex +1 more source
Microfluidic Simulation and Optimization of Blood Coagulation Factors and Anticoagulants in Polymethyl Methacrylate Microchannels [PDF]
Philip Nathaniel Immanuel +2 more
openalex +1 more source
Bioengineered Lymphatic Vessels in Synthetic Matrices to Study Breast Cancer Cell Functions
Lymphatic vessels are involved in cancer metastasis. To study the interplay between metastasizing cancer cells and lymphatic vessels under highly reproducible conditions, advanced in vitro models are required. In this work, 3D lymphatic networks are formed in biomimetic hydrogels and their interactions with invasive and non‐invasive cancer cell‐lines ...
Rodi Odabasi +7 more
wiley +1 more source

