Results 111 to 120 of about 451,568 (295)

Embedded 3D‐Coaxial Bioprinting of Stenotic Brain Vessels with a Mechanically Enhanced Extracellular Matrix Bioink for Investigating Hemodynamic Force‐Induced Endothelial Responses

open access: yesAdvanced Functional Materials, EarlyView.
In this study, a physically enhanced vascular dECM bioink and used 3D‐coaxial bioprinting are developed to fabricate mature brain blood vessels for cerebral atherosclerosis research. This model demonstrates that vascular geometry‐induced hemodynamic changes trigger vascular inflammation, ensuring its potential for cerebrovascular research.
Wonbin Park   +7 more
wiley   +1 more source

A Sustainable Biotechnology Approach for Mineral Separation

open access: yesAdvanced Functional Materials, EarlyView.
Silver‑binding peptides are first identified through phage‐display screening, and then engineered into multifunctional and responsive peptides or proteins. These tailored biomolecules can selectively capture and aggregate silver particles or ions from complex mixtures, enabling rapid and efficient silver separation and recovery.
Guangze Yang   +7 more
wiley   +1 more source

Endocytic Programming via Porous Silicon Nanoparticles Enhances TLR4 Nanoagonist Potency for Macrophage‐Mediated Immunotherapy

open access: yesAdvanced Functional Materials, EarlyView.
Porous silicon nanoparticles (PSiNPs) reprogram macrophage endocytosis of manganese@albumin‐based TLR4 nanoagonists, driving TRIF‐biased TLR4 signaling, eliciting robust proinflammatory responses, and potentiating macrophage‐mediated immunotherapeutic effects against NSCLC.
Xiaomei Zhang   +9 more
wiley   +1 more source

Machine Learning Guided Design of Nerve‐On‐A‐Chip Platforms with Promoted Neurite Outgrowth

open access: yesAdvanced Functional Materials, EarlyView.
Compared to labor‐intensive trial‐and‐error experimentation, a machine learning (ML)‐guided workflow, incorporating cell viability assays, data augmentation, ensemble modeling, and model interpretation, is developed to accelerate nerve‐on‐a‐chip optimization and uncover data‐driven design principles.
Tsai‐Chun Chung   +8 more
wiley   +1 more source

Printed Integrated Logic Circuits Based on Chitosan‐Gated Organic Transistors for Future Edible Systems

open access: yesAdvanced Functional Materials, EarlyView.
Edible electronics needs integrated logic circuits for computation and control. This work presents a potentially edible printed chitosan‐gated transistor with a design optimized for integration in circuits. Its implementation in integrated logic gates and circuits operating at low voltage (0.7 V) is demonstrated, as well as the compatibility with an ...
Giulia Coco   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy