Results 51 to 60 of about 78,287 (278)
Electrically Tunable On‐Chip Topological Photonics with Integrated Carbon Nanotubes
This work demonstrates electrically tunable on‐chip topological THz devices by integrating 2D carbon nanotube (CNT) sheets with valley‐Hall photonic crystals, enabling broadband transmission modulation (71% modulation depth) and tunable narrowband filtering (0.54 GHz shift) through electrically induced thermal tuning. This advancement paves the way for
Jifan Yin +7 more
wiley +1 more source
Retrieval of Gas Temperature and Pressure Based on Rayleigh–Brillouin Spectrum
Optical detection methods such as Rayleigh-Brillouin scattering spectrum can be used for physical parameter measurement in solids, liquids, and gas. In this paper, a new method based on spectral characteristics is proposed to realize temperature and ...
Peng Zhang +7 more
doaj +1 more source
Two‐photon lithography (TPL) enables 3D magnetic nanostructures with unmatched freedom in geometry and material choice. Advances in voxel control, deposition, and functionalization open pathways to artificial spin ices, racetracks, microrobots, and a number of additional technological applications.
Joseph Askey +5 more
wiley +1 more source
Dynamic Brillouin cooling for continuous optomechanical systems
Up until now, ground state cooling using optomechanical interaction is realized in the regime where optical dissipation is higher than mechanical dissipation.
Changlong Zhu, Birgit Stiller
doaj +1 more source
The highly anisotropic Fermi surface of bismuth results in variations in magnetotransport properties across different crystallographic directions, which can be characterized by studying microcrystals. To avoid the observed surface melting under room temperature Focused Ion Beam (FIB) irradiation, two low‐temperature FIB fabrication methods are proposed
Amaia Sáenz‐Hernández +6 more
wiley +1 more source
Bond-Bending and Bond-Stretching Phonons in Ferromagnetic La_0.7Sr_0.3MnO_3
Longitudinal optical phonons with oxygen character were measured in La_0.7Sr_0.3MnO_3 by inelastic neutron scattering in the (1 0 0) cubic direction and results were compared with shell model predictions.
D. Reznik, W. Reichardt, W. Reichardt
core +2 more sources
Local Thermal Conductivity Patterning in Rotating Lattice Crystals of Anisotropic Sb2S3
Microscale control of thermal conductivity in Sb2S3 is demonstrated via laser‐induced rotating lattice crystals. Thermal conductivity imaging reveals marked thermal transport anisotropy, with the c axis featuring amorphous‐like transport, whereas in‐plane directions (a, b) exhibit 3.5x and 1.7x larger thermal conductivity.
Eleonora Isotta +13 more
wiley +1 more source
Guided-wave Brillouin scattering in air
Here we identify a new form of optomechanical coupling in gas-filled hollow-core fibers. Stimulated forward Brillouin scattering is observed in air in the core of a photonic bandgap fiber.
Behunin, Ryan O. +2 more
core +1 more source
Quantifying Spin Defect Density in hBN via Raman and Photoluminescence Analysis
An all‐optical method is presented for quantifying the density of boron vacancy spin defects in hexagonal boron nitride (hBN). By correlating Raman and photoluminescence signals with irradiation fluence, defect‐induced Raman modes are identified and established an relationship linking optical signatures to absolute defect densities. This enables direct
Atanu Patra +8 more
wiley +1 more source
The expanded uncertainty of the measured Brillouin scattering shift frequencies is essential in assessing the measurements of parameters of various materials. We describe the general operation principles of a Brillouin light scattering (BLS) spectrometer
Patrice Salzenstein, Thomas Y. Wu
doaj +1 more source

