Results 131 to 140 of about 309,097 (345)

CO2 Reduction on Copper‐Nitrogen‐Doped Carbon Catalysts Tuned by Pulsed Potential Electrolysis: Effect of Pulse Potential

open access: yesAdvanced Functional Materials, EarlyView.
This study demonstrates that pulsed potential electrolysis significantly improves CO2 reduction performance on copper‐nitrogen doped carbon electrodes. The formation of cationic copper sites and metallic clusters as a function of applied intermittent potential leads to notable selectivity changes compared to potentiostatic reduction.
Dorottya Hursán   +13 more
wiley   +1 more source

Self‐Assembled Heterosymmetric Structure with Tunable Polarization Optics for Reversible Matrix Encryption

open access: yesAdvanced Functional Materials, EarlyView.
Sustainable films with heterosymmetric structures, harmoniously integrating symmetry and asymmetry, are fabricated using cellulose nanocrystals and hydrophilic nanolignin via evaporation‐induced self‐assembly, which exhibit excellent multiple polarization optical properties.
Qun Song   +7 more
wiley   +1 more source

Structure of 3,4-Dihydroxy-2-butanone 4-Phosphate Synthase from Methanococcus jannaschii in Complex with Divalent Metal Ions and the Substrate Ribulose 5-Phosphate: implications for the catalytic mechanism [PDF]

open access: yes, 2003
Skeletal rearrangements of carbohydrates are crucial for many biosynthetic pathways. In riboflavin biosynthesis ribulose 5-phosphate is converted into 3,4-dihydroxy-2-butanone 4-phosphate while its C4 atom is released as formate in a sequence of metal ...
Bacher, Adelbert   +5 more
core  

Tailoring Redox Active Sites with Dual‐Interfacial Electric Fields for Concurrent Photocatalytic Biomass Valorization and H2 Production

open access: yesAdvanced Functional Materials, EarlyView.
A rationally engineered bifunctional photocatalyst is reported, which achieves simultaneous selective oxidation of biomass‐derived 5‐hydroxymethylfurfural (HMF) to 2,5‐diformylfuran (DFF) and efficient H2 evolution. By precisely positioning Au and Co3O4 on Zn3In2S6 nanosheet, dual interfacial electric fields are well constructed to spatially separate ...
Shiqing Li   +8 more
wiley   +1 more source

Smart, Bio‐Inspired Polymers and Bio‐Based Molecules Modified by Zwitterionic Motifs to Design Next‐Generation Materials for Medical Applications

open access: yesAdvanced Functional Materials, EarlyView.
Bio‐based and (semi‐)synthetic zwitterion‐modified novel materials and fully synthetic next‐generation alternatives show the importance of material design for different biomedical applications. The zwitterionic character affects the physiochemical behavior of the material and deepens the understanding of chemical interaction mechanisms within the ...
Theresa M. Lutz   +3 more
wiley   +1 more source

The Location of the Ligand-binding Site of Carbohydrate-binding Modules That Have Evolved from a Common Sequence Is Not Conserved [PDF]

open access: hybrid, 2001
Mirjam Czjzek   +12 more
openalex   +1 more source

Advanced Oral Delivery Systems for Nutraceuticals

open access: yesAdvanced Healthcare Materials, EarlyView.
Emerging delivery technologies are explored to overcome barriers to oral nutraceutical absorption. Traditional carriers are compared with novel platforms including biodegradable polymers, MOFs, MPNs, and 3D printing. These systems enhance bioavailability, control release, and enable personalized nutrition.
Xin Yang   +4 more
wiley   +1 more source

Membrane Fusion‐Inspired Nanomaterials: Emerging Strategies for Infectious Disease and Cancer Diagnostics

open access: yesAdvanced Healthcare Materials, EarlyView.
Membrane fusion‐inspired nanomaterials offer transformative potential in diagnostics by mimicking natural fusion processes to achieve highly sensitive and specific detection of disease biomarkers. This review highlights recent advancements in nanomaterial functionalization strategies, signal amplification systems, and stimuli‐responsive fusion designs,
Sojeong Lee   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy