Results 131 to 140 of about 399,768 (316)

Generalizing Gelatin Methacryloyl Granular Hydrogel Fabrication Using Stable Microgels with Predictable Stiffness

open access: yesAdvanced Healthcare Materials, EarlyView.
Gelatin methacryloyl (GelMA) granular hydrogel scaffolds (GHS) are fabricated using a generalized two‐step photocrosslinking approach to yield stable (non‐dissolving) microgels suitable for in situ covalent assembly under physiological conditions. A phase diagram is developed to define the interplay between individual microgel stability and scaffold ...
Yuanhui Xiang   +4 more
wiley   +1 more source

Si Inhibited Osteoclastogenesis: The Role of Fe and the Fenton Reaction

open access: yesAdvanced Healthcare Materials, EarlyView.
Silicate (Si) inhibition of osteoclastogenesis, is mediated by Fe. Si chemical interactions with Fe inhibit the Fenton reaction and intercellular ROS availability. This reduction in ROS availability inhibits osteoclastogenesis. The addition of Fe, in Si‐inhibited osteoclast cultures, restores the Fenton reaction, and osteoclastogenesis.
Yutong Li   +7 more
wiley   +1 more source

CARBON DIOXIDE UTILIZATION BY PIGEON LIVER

open access: hybrid, 1941
E. Anthony Evans, Louis Slotin
openalex   +1 more source

Engineering a Human‐Sized Common Bile Duct Prototype with Regenerative Potential: In Vitro Evaluation of Mechanics, Function, Degradation, and Immune Modulation

open access: yesAdvanced Healthcare Materials, EarlyView.
This study presents a multiphasic bile duct construct composed of biocompatible materials and cells, featuring an inner layer that supports biliary epithelium growth, a middle layer providing mechanical strength, and an outer cell‐permissive layer designed to support future in vivo integration.
Mattia Pasqua   +9 more
wiley   +1 more source

3D‐Printed Multidimensional Bionic Mg‐MC/PLGA Composite for Tailored Repair of Segmental Long Bone Defects

open access: yesAdvanced Healthcare Materials, EarlyView.
This study develops 3D‐printed Mg‐MC/PLGA scaffolds with varying Mg concentrations (0–20%). The 5% Mg scaffold shows optimal cytocompatibility, osteogenic activity in vitro, and significantly enhances bone regeneration in rabbits, improving bone volume and mechanical strength.
Shihang Liu   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy