Results 181 to 190 of about 405,232 (337)

Activation of HTR2B Suppresses Osteosarcoma Progression through the STAT1‐NLRP3 Inflammasome Pathway and Promotes OASL1+ Macrophage Production to Enhance Antitumor Immunity

open access: yesAdvanced Science, EarlyView.
Activation of HTR2B suppresses osteosarcoma progression through the STAT1‐NLRP3 inflammasome pathway and promotes OASL1+ Macrophage production to enhance anti‐tumor immunity. Abstract Osteosarcoma is a primary malignant bone tumor originating from mesenchymal tissue, and associated with poor prognosis.
Zhen Huang   +7 more
wiley   +1 more source

Normalization and Subtraction of Cap-Trapper-Selected cDNAs to Prepare Full-Length cDNA Libraries for Rapid Discovery of New Genes [PDF]

open access: hybrid, 2000
Piero Carninci   +9 more
openalex   +1 more source

Enhanced Activities of OCT4 and SOX2 Promote Epigenetic Reprogramming by Shortening G1 Phase

open access: yesAdvanced Science, EarlyView.
Fusing the VP16 domain to OCT4 and SOX2 (OvSvK) enhances iPSC generation by activating downstream targets, including those regulating the cell cycle. This accelerates reprogramming by shortening the G1 phase and reducing H3K27me3 levels. Modulating Ccnd1, Cdkn2a, and Ccne1 improves efficiency, linking cell cycle to epigenetic remodeling.
Lin Guo   +17 more
wiley   +1 more source

Targeted Delivery of α‐ketoglutarate to Macrophages in Bone: A Novel Therapeutic Strategy for Improving Fracture Healing in Type 2 Diabetes

open access: yesAdvanced Science, EarlyView.
The study reveals that glutaminolysis in macrophages is inhibited under type 2 diabetes mellitus (T2DM) conditions, which impedes fracture healing by reducing bone morphogenetic protein 2 (BMP2) production through increased cytosine methylation on the promoter.
Jing Wang   +12 more
wiley   +1 more source

Construction of a cDNA library and preliminary analysis of the expressed sequence tags of the earthworm Eisenia fetida (Savigny, 1826). [PDF]

open access: yesMol Med Rep, 2019
Liu C   +14 more
europepmc   +1 more source

Apoptotic Bodies Restore NAD and Mitochondrial Homeostasis in Fibroblasts

open access: yesAdvanced Science, EarlyView.
Mesenchymal stem cell‐derived apoptotic bodies (MSC‐ABs) target keloid fibroblasts (KFs), restoring nicotinamide adenine dinucleotide (NAD) metabolism and mitochondrial function, suppressing collagen overproduction, and rebalancing tissue homeostasis, offering a novel therapy for keloid.
Shutong Qian   +10 more
wiley   +1 more source

Home - About - Disclaimer - Privacy