Results 131 to 140 of about 5,434,917 (296)

Investigating the cell of origin and novel molecular targets in Merkel cell carcinoma: a historic misnomer

open access: yesMolecular Oncology, EarlyView.
This study indicates that Merkel cell carcinoma (MCC) does not originate from Merkel cells, and identifies gene, protein & cellular expression of immune‐linked and neuroendocrine markers in primary and metastatic Merkel cell carcinoma (MCC) tumor samples, linked to Merkel cell polyomavirus (MCPyV) status, with enrichment of B‐cell and other immune cell
Richie Jeremian   +10 more
wiley   +1 more source

YAP1::TFE3 mediates endothelial‐to‐mesenchymal plasticity in epithelioid hemangioendothelioma

open access: yesMolecular Oncology, EarlyView.
The YAP1::TFE3 fusion protein drives endothelial‐to‐mesenchymal transition (EndMT) plasticity, resulting in the loss of endothelial characteristics and gain of mesenchymal‐like properties, including resistance to anoikis, increased migratory capacity, and loss of contact growth inhibition in endothelial cells.
Ant Murphy   +9 more
wiley   +1 more source

Emerging role of ARHGAP29 in melanoma cell phenotype switching

open access: yesMolecular Oncology, EarlyView.
This study gives first insights into the role of ARHGAP29 in malignant melanoma. ARHGAP29 was revealed to be connected to tumor cell plasticity, promoting a mesenchymal‐like, invasive phenotype and driving tumor progression. Further, it modulates cell spreading by influencing RhoA/ROCK signaling and affects SMAD2 activity. Rho GTPase‐activating protein
Beatrice Charlotte Tröster   +3 more
wiley   +1 more source

Gut microbiota diversity is prognostic in metastatic hormone receptor‐positive breast cancer patients receiving chemotherapy and immunotherapy

open access: yesMolecular Oncology, EarlyView.
In this exploratory study, we investigated the relationship between the gut microbiota and outcome in patients with metastatic hormone receptor‐positive breast cancer, treated in a randomized clinical trial with chemotherapy alone or chemotherapy in combination with immune checkpoint blockade.
Andreas Ullern   +7 more
wiley   +1 more source

Modeling hepatic fibrosis in TP53 knockout iPSC‐derived human liver organoids

open access: yesMolecular Oncology, EarlyView.
This study developed iPSC‐derived human liver organoids with TP53 gene knockout to model human liver fibrosis. These organoids showed elevated myofibroblast activation, early disease markers, and advanced fibrotic hallmarks. The use of profibrotic differentiation medium further amplified the fibrotic signature seen in the organoids.
Mustafa Karabicici   +8 more
wiley   +1 more source

PYCR1 inhibition in bone marrow stromal cells enhances bortezomib sensitivity in multiple myeloma cells by altering their metabolism

open access: yesMolecular Oncology, EarlyView.
This study investigated how PYCR1 inhibition in bone marrow stromal cells (BMSCs) indirectly affects multiple myeloma (MM) cell metabolism and viability. Culturing MM cells in conditioned medium from PYCR1‐silenced BMSCs impaired oxidative phosphorylation and increased sensitivity to bortezomib.
Inge Oudaert   +13 more
wiley   +1 more source

In vitro properties of patient serum predict clinical outcome after high dose rate brachytherapy of hepatocellular carcinoma

open access: yesMolecular Oncology, EarlyView.
Following high dose rate brachytherapy (HDR‐BT) for hepatocellular carcinoma (HCC), patients were classified as responders and nonresponders. Post‐therapy serum induced increased BrdU incorporation and Cyclin E expression of Huh7 and HepG2 cells in nonresponders, but decreased levels in responders.
Lukas Salvermoser   +14 more
wiley   +1 more source

Identification and Characterization of a Minimal Apoptotic Domain from p53

open access: yesThe Scientific World Journal, 2001
Kevin M. Ryan, Karen H. Vousden
doaj   +1 more source

A synthetic benzoxazine dimer derivative targets c‐Myc to inhibit colorectal cancer progression

open access: yesMolecular Oncology, EarlyView.
Benzoxazine dimer derivatives bind to the bHLH‐LZ region of c‐Myc, disrupting c‐Myc/MAX complexes, which are evaluated from SAR analysis. This increases ubiquitination and reduces cellular c‐Myc. Impairing DNA repair mechanisms is shown through proteomic analysis.
Nicharat Sriratanasak   +8 more
wiley   +1 more source

Adaptaquin is selectively toxic to glioma stem cells through disruption of iron and cholesterol metabolism

open access: yesMolecular Oncology, EarlyView.
Adaptaquin selectively kills glioma stem cells while sparing differentiated brain cells. Transcriptomic and proteomic analyses show Adaptaquin disrupts iron and cholesterol homeostasis, with iron chelation amplifying cytotoxicity via cholesterol depletion, mitochondrial dysfunction, and elevated reactive oxygen species.
Adrien M. Vaquié   +16 more
wiley   +1 more source

Home - About - Disclaimer - Privacy