Results 241 to 250 of about 583,827 (328)
Implementation of Drug‐Induced Rhabdomyolysis and Acute Kidney Injury in Microphysiological System
A modular Muscle–Kidney proximal tubule‐on‐a‐chip integrates 3D skeletal muscle and renal proximal tubule tissues to model drug‐induced rhabdomyolysis and acute kidney injury. The coculture system enables dynamic tissue interaction, functional contraction monitoring, and quantification of nephrotoxicity, revealing drug side effect‐induced metabolic ...
Jaesang Kim +4 more
wiley +1 more source
Bio‐based and (semi‐)synthetic zwitterion‐modified novel materials and fully synthetic next‐generation alternatives show the importance of material design for different biomedical applications. The zwitterionic character affects the physiochemical behavior of the material and deepens the understanding of chemical interaction mechanisms within the ...
Theresa M. Lutz +3 more
wiley +1 more source
Design and inference in phase II/III clinical trials incorporating monitoring of multiple endpoints.
Herman E. Ray
openalex +2 more sources
This review highlights recent advances in label‐free optical biosensors based on 2D materials and rationally designed mixed‐dimensional nanohybrids, emphasizing their synergistic effects and novel functionalities. It also discusses multifunctional sensing platforms and the integration of machine learning for intelligent data analysis.
Xinyi Li, Yonghao Fu, Yuehe Lin, Dan Du
wiley +1 more source
Putting Theory into Practice by Developing a Novel Digital Health Technology-Derived Endpoint in Sleep Quality. [PDF]
Kramer F +7 more
europepmc +1 more source
A programmable interpenetrating double‐network architecture, created via 3D‐TIPS printing and resin infusion, synergistically combines thermoplastic and thermosetting elastomers to balance structural rigidity and surface softness—crucial for paediatric laryngeal stents.
Elizabeth F. Maughan +14 more
wiley +1 more source
Unleashing the Power of Machine Learning in Nanomedicine Formulation Development
A random forest machine learning model is able to make predictions on nanoparticle attributes of different nanomedicines (i.e. lipid nanoparticles, liposomes, or PLGA nanoparticles) based on microfluidic formulation parameters. Machine learning models are based on a database of nanoparticle formulations, and models are able to generate unique solutions
Thomas L. Moore +7 more
wiley +1 more source
Re: Small versus large bore chest tube in traumatic hemothorax, hemopneumothorax, and pneumothorax-external validity, endpoint heterogeneity, and trial sequential analysis assumptions : Author. [PDF]
Ravikumar S.
europepmc +1 more source

