Results 111 to 120 of about 244,667 (356)

Cell Surface Thiol Engineering Mechanoregulates Myogenic Differentiation via the FAK–PI3K–AKT Axis

open access: yesAdvanced Healthcare Materials, EarlyView.
Schematic diagram illustrating how cell surface modification of skeletal muscle progenitor cells through TCEP treatment reveals enhanced cell adhesion, intracellular tension, and myogenesis at 19.66 kPa stiffness, leading to optimal cell fusion. In contrast, no significant changes are observed in the softer (10.61 kPa) or stiffer (49.4 kPa) matrices ...
Juyeon Kim   +10 more
wiley   +1 more source

Molecular Mechanisms of Extracellular Vesicle Biogenesis and Their Impact on the Design of Custom EVs

open access: yesAdvanced Healthcare Materials, EarlyView.
Extracellular vesicles (EVs) are pivotal mediators of intercellular communication and disease, yet the fundamental mechanisms controlling their biogenesis and cargo selection remain unclear. This limitation hinders their diagnostic utility and therapeutic development.
Luís Carvalho Ferraz   +2 more
wiley   +1 more source

Chronic high‐dose testosterone treatment: impact on rat cardiac contractile biology

open access: yesPhysiological Reports, 2019
Androgen therapy provides cardiovascular benefits for hypogonadism. However, myocardial hypertrophy, fibrosis, and infarction have been reported in testosterone or androgenic anabolic steroid abuse.
Munthana Wadthaisong   +4 more
doaj   +1 more source

Proctolin and an Endogenous Proctolin-Like Peptide Enhance the Contractility of the Limulus Heart [PDF]

open access: yes, 1983
Synthetic proctolin increases the force but not the rate of heart contractions of Limulus in a time- and dose-dependent manner. The threshold of this effect is 3 × 10−10M and the ED50 is approximately 10−8M. At concentrations up to 10−7 M, proctolin has
Augustine, George J.   +2 more
core   +2 more sources

Tapered Pillar Design for High‐Precision Force Readout in Miniaturized Engineered Heart Tissues From Human Pluripotent Stem Cells

open access: yesAdvanced Healthcare Materials, EarlyView.
Engineered heart tissues (EHTs) are a valuable approach in capturing human cardiac physiology and drug responses in vitro. Here, a novel tapered pillar design is developed in an EHT platform to confine tissues in a predefined position‐ at the middle of the pillar height.
Milica Dostanić   +9 more
wiley   +1 more source

Therapeutic Implants: Mechanobiologic Enhancement of Osteogenic, Angiogenic, and Myogenic Responses in Human Mesenchymal Stem Cells on 3D‐Printed Titanium Truss

open access: yesAdvanced Healthcare Materials, EarlyView.
This study investigates a synergistic effect between 3D‐printed surface features and mechanical micro‐strain in enhancing the osteogenic, angiogenic, and myogenic responses of human mesenchymal stem cells (hMSCs). Load‐induced mechanotransduction, facilitated by the implant's architectural design, significantly amplifies hMSC differentiation.
Se‐Hwan Lee   +9 more
wiley   +1 more source

ROS‐Scavenging Multifunctional Microneedle Patch Facilitating Wound Healing

open access: yesAdvanced Healthcare Materials, EarlyView.
A reactive oxygen species (ROS) scavenging and immunomodulatory microneedle patch based on hyaluronic acid methacrylate (HaMA) and Flightless I (Flii)‐siRNA‐laden arginine functionalized poly (β‐amino ester)/alginate particles is developed for chronic wound healing applications.
Mahshid Kharaziha   +4 more
wiley   +1 more source

Engineering Extracellular Microenvironments: The Impact of Fibrous Materials on Cell Behavior

open access: yesAdvanced Healthcare Materials, EarlyView.
Fibrous structures are key elements of the native extracellular matrix and crucial for directing cell behavior. This review discusses how fiber properties such as composition, diameter, and alignment affect cell responses in 2D and 3D systems. Strategies for integrating fibrous cues into engineered tissues are highlighted, and future directions for ...
Zan Lamberger, Gregor Lang
wiley   +1 more source

Practical Guide to the Design of Granular Hydrogels for Customizing Complex Cellular Microenvironments

open access: yesAdvanced Healthcare Materials, EarlyView.
Granular hydrogels are emerging microporous platforms for cell culture and delivery, showing great potential for replicating the complex, heterogeneous environments found in natural tissues. This review outlines the design principles of granular hydrogels, highlighting critical factors that determine the final physicochemical properties of the entire ...
Shuhan Feng, Kaiyang Chen, Shiqi Wang
wiley   +1 more source

Home - About - Disclaimer - Privacy