Results 101 to 110 of about 1,069,636 (263)
A new class of living liquid metal composites is introduced, embedding Bacillus subtilis endospores into eutectic gallium–indium (EGaIn). The spores enhance droplet coalescence, strengthen interfacial conductivity, and provide on‐demand electrogenic functionality after germination. The composites exhibit high conductivity, self‐healing, patternability,
Maryam Rezaie, Yang Gao, Seokheun Choi
wiley +1 more source
Engeström’s (1987, 1999) innovations in cultural-historical activity theory emphasise the role of contradictions in analysing and transforming learning in practice.
Paul Warmington
doaj
Electron–Matter Interactions During Electron Beam Nanopatterning
This article reviews the electron–matter interactions important to nanopatterning with electron beam lithography (EBL). Electron–matter interactions, including secondary electron generation routes, polymer radiolysis, and electron beam induced charging, are discussed.
Camila Faccini de Lima +2 more
wiley +1 more source
Error correction in DHSY [PDF]
In this note, we consider the contradiction between the fact that the best fit for the UK consumption data in Davidson et al. (1978) is obtained using an equation with an intercept but without an error correction term, whereas the equation with error ...
Eliasson, Ann-Charlotte +1 more
core
Cold Quad‐Modal Nanocomplex for Precise and Quantitative In Vivo Stem Cell Tracking
Multimodal albumin–bismuth sulfide–superparamagnetic iron oxide (ABS) nanocomplexes are developed for stem cell tracking across four different imaging modalities: MRI, MPI, MSOT, and CT. Combining its flexibility with high sensitivity, this quad‐modal imaging agent enables a robust quantification of ABS‐labeled stem cells in vivo.
Ali Shakeri‐Zadeh +4 more
wiley +1 more source
A novel approach for the design of functional semiconductors is presented, which utilizes the excellent optoelectronic properties of layered hybrid perovskites and the possibility to introduce a molecular photoswitch as the organic spacer. This concept is successfully demonstrated on a coumarin‐based system with the possibility to change the bandgap ...
Oliver Treske +4 more
wiley +1 more source
Spin Defects in Hexagonal Boron Nitride as 2D Strain Sensors
We demonstrate that boron‐vacancy (VB${\rm V}_{\rm B}$) centers in hexagonal boron nitride (hBN) enable quantitative strain sensing with sub‐micrometer resolution. Using this approach under continuously tunable in‐plane stress, we precisely quantify strain‐induced shifts of the E2g${\rm E}_{2{\rm g}}$ Raman mode in multilayer hBN, establishing VB${\rm ...
Zhao Mu +7 more
wiley +1 more source
Membrane fusion‐inspired nanomaterials offer transformative potential in diagnostics by mimicking natural fusion processes to achieve highly sensitive and specific detection of disease biomarkers. This review highlights recent advancements in nanomaterial functionalization strategies, signal amplification systems, and stimuli‐responsive fusion designs,
Sojeong Lee +9 more
wiley +1 more source
Development of dialectical thinking in education
Background. The article presented as a discussion brings up the variety of relevant topics on the dialectical thinking formation: “Why is the modern education not interested in developing the dialectical thinking?”; “If based on the dialectical and ...
Eugeny E. Krasheninnikov +1 more
doaj +1 more source
Cell Calcification Models and Their Implications for Medicine and Biomaterial Research
Calcification, is the process by which the tissues containing minerals are formed, occurring during normal physiological processes, or in pathological conditions. Here, it is aimed to give a comprehensive overview of the range of cell models available, and the approaches taken by these models, highlighting when and how methodological divergences arise,
Luke Hunter +5 more
wiley +1 more source

