Results 221 to 230 of about 38,793 (285)

From Natural Discovery to AI‐Guided Design: A Curated Collection of Compact Enhancers for Crop Engineering

open access: yesAdvanced Science, EarlyView.
ABSTRACT Precise transgene‐free gene upregulation remains a challenge in crop biotechnology, as conventional enhancers often exceed CRISPR‐mediated knock‐in size constraints and face regulatory hurdles. Here we establish a foundational cross‐species resource of compact transcriptional enhancers developed via STEM‐seq, a high‐throughput screening ...
Qi Yao   +14 more
wiley   +1 more source

Structure‐Guided Engineering of a Cas12i Nuclease Unlocks Near‐PAMless Genome Editing

open access: yesAdvanced Science, EarlyView.
CRISPR‐Cas nucleases are limited by PAM requirements, restricting genome accessibility. Structure‐guided engineering of the compact Cas12i nuclease SF01 produced three variants with near‐PAMless, enabling efficient editing at diverse 5'‐NNTN‐3' sites. These nucleases expand the editable portion of the human genome more than fourfold, enabling efficient
Qitong Chen   +15 more
wiley   +1 more source

F‐Box and Leucine‐Rich Repeat Protein 4 (FBXL4) Maintains Sarcomere Integrity and Cardiac Function by Enhancing K48‐Linked Ubiquitinated Degradation of Profilin‐1 (PFN1)

open access: yesAdvanced Science, EarlyView.
Schematic diagram depicting the proposed signaling mechanisms underlying the effects of FBXL4 in the setting of cardiac hypertrophy. Under hypertrophic stimulation, cardiomyocytes‐specific overexpression FBXL4 maintains sarcomere integrity and cardiac function by enhancing K48‐linked ubiquitinated degradation of PFN1 at the K70 site.
Xingda Li   +11 more
wiley   +1 more source

SETDB2 Mitigates Podocyte Dysfunction in Diabetic Kidney Disease Through Epigenetic Silencing of SMAD3

open access: yesAdvanced Science, EarlyView.
SETDB2 epigenetically represses Smad3 transcription by increasing H3K9me3 enrichment at its promoter, thereby mitigating podocyte dysfunction in DKD. The transcription factor TCF21 binds directly to the Setdb2 promoter and enhances its expression in podocytes. Abstract Podocyte dysfunction represents both an early pathological hallmark and a key driver
Lanfang Li   +14 more
wiley   +1 more source

Targeted Extracellular Vesicles Deliver Asiaticoside to Inhibit AURKB/DRP1‐Mediated Mitochondrial Fission and Attenuate Hypertrophic Scar Formation

open access: yesAdvanced Science, EarlyView.
Hypertrophic scar formation is driven by excessive mitochondrial fission in wound macrophages, which we discover is governed by a novel AURKB‐DRP1(Ser616) axis. The study develops a targeted therapy using cRGD‐decorated extracellular vesicles to deliver the natural compound Asiaticoside specifically to macrophages.
Luyu Li   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy