Results 211 to 220 of about 6,957,076 (388)

Growth Hormone‐Loaded 3D Printed Silk Fibroin‐Cellulose Dressings for Ischemic Wounds

open access: yesAdvanced Healthcare Materials, EarlyView.
3D‐printed wound dressings combining carboxymethyl cellulose, silk fibroin, and growth hormone accelerate healing in diabetic ulcers. These bioactive, customizable dressings enhance angiogenesis, cellular proliferation, and immune modulation. Proteomic analysis reveals activation of regenerative pathways and reduced fibrosis, highlighting their ...
Maria Pita‐Vilar   +7 more
wiley   +1 more source

Redefining Therapies for Drug‐Resistant Tuberculosis: Synergistic Effects of Antimicrobial Peptides, Nanotechnology, and Computational Design

open access: yesAdvanced Healthcare Materials, EarlyView.
Antimicrobial peptide (AMP)‐loaded nanocarriers provide a multifunctional strategy to combat drug‐resistant Mycobacterium tuberculosis. By enhancing intracellular delivery, bypassing efflux pumps, and disrupting bacterial membranes, this platform restores phagolysosome fusion and macrophage function.
Christian S. Carnero Canales   +11 more
wiley   +1 more source

Evaluating the Antiviral Efficacy of Encapsulated PKC Inhibitor BIM‐I against influenza A Virus Infection

open access: yesAdvanced Healthcare Materials, EarlyView.
This study explores nanoparticle delivery of the protein kinase C inhibitor bisindolylmaleimide‐I (BIM‐I) to combat influenza A virus infections. Encapsulation in biodegradable PLGA nanoparticles improved safety while maintaining the compound's strong antiviral activity.
Laura Klement   +12 more
wiley   +1 more source

Overview of oxidative stress and the role of micronutrients in critical illness

open access: hybrid, 2022
Ellen Dresen   +5 more
openalex   +1 more source

Amine‐Functionalized Chitosan/dECM Composite Promotes Cutaneous Regeneration and Hair Follicle Activation by Regulating Oxidative Stress and Inflammation

open access: yesAdvanced Healthcare Materials, EarlyView.
An amine‐functionalized chitosan and hydrolyzed dECM composite promotes cutaneous regeneration by modulating oxidative stress and inflammatory pathways. The material accelerates wound closure and stimulates hair follicle activation in UV‐damaged cutaneous tissue.
Yu‐Jin Kim   +11 more
wiley   +1 more source

Home - About - Disclaimer - Privacy