Results 51 to 60 of about 4,316,616 (347)
First results from the CRESST-III low-mass dark matter program [PDF]
Physical Review D, 2019 The CRESST experiment is a direct dark matter search which aims to measure interactions of potential dark matter particles in an earth-bound detector.A. Abdelhameed, G. Angloher, P. Bauer, A. Bento, E. Bertoldo, C. Bucci, L. Canonica, A. D’Addabbo, X. Defay, S. Lorenzo, A. Erb, F. Feilitzsch, S. Fichtinger, N. F. Iachellini, A. Fuss, P. Gorla, D. Hauff, J. Jochum, A. Kinast, H. Kluck, H. Kraus, A. Langenkämper, M. Mancuso, V. Mokina, E. Mondragón, A. Münster, M. Olmi, T. Ortmann, C. Pagliarone, L. Pattavina, F. Petricca, W. Potzel, F. Pröbst, F. Reindl, J. Rothe, K. Schäffner, J. Schieck, V. Schipperges, D. Schmiedmayer, S. Schönert, C. Schwertner, M. Stahlberg, L. Stodolsky, C. Strandhagen, R. Strauss, C. Türkoğlu, I. Usherov, M. Willers, V. Zema +48 moresemanticscholar +1 more sourceDark matter and the LHC [PDF]
Nucl.Phys.Proc.Suppl.194:5-10,2009, 2009 Cosmological and astrophysical measurements indicate that the universe
contains a large amount of dark matter. A number of weak scale dark matter
candidates have been proposed in extensions of the standard model. The
potential to discover the dark matter particle and determine its properties at
the upcoming LHC is summarized.arxiv +1 more sourceResults from a Search for Dark Matter in the Complete LUX Exposure. [PDF]
Physical Review Letters, 2016 We report constraints on spin-independent weakly interacting massive particle (WIMP)-nucleon scattering using a 3.35×10^{4} kg day exposure of the Large Underground Xenon (LUX) experiment. A dual-phase xenon time projection chamber with 250 kg of active D. Akerib, S. Alsum, H. Araújo, X. Bai, A. J. Bailey, J. Balajthy, P. Beltrame, E. Bernard, A. Bernstein, T. P. Biesiadzinski, E. Boulton, R. Bramante, P. Brás, D. Byram, S. Cahn, M. Carmona-Benitez, C. Chan, A. A. Chiller, C. Chiller, A. Currie, J. Cutter, T. Davison, A. Dobi, J. Dobson, E. Druszkiewicz, B. Edwards, C. Faham, S. Fiorucci, R. Gaitskell, V. Gehman, C. Ghag, K. Gibson, M. Gilchriese, C. Hall, M. Hanhardt, S. Haselschwardt, S. A. Hertel, D. P. Hogan, M. Horn, D. Huang, C. Ignarra, M. Ihm, R. Jacobsen, W. Ji, K. Kamdin, K. Kazkaz, D. Khaitan, R. Knoche, N. Larsen, C. Lee, B. Lenardo, K. Lesko, A. Lindote, M. Lopes, A. Manalaysay, R. Mannino, M. Marzioni, D. Mckinsey, D. Mei, J. Mock, M. Moongweluwan, J. Morad, A. Murphy, C. Nehrkorn, H. Nelson, F. Neves, K. O'Sullivan, K. Oliver-Mallory, K. Palladino, E. K. Pease, P. Phelps, L. Reichhart, C. Rhyne, S. Shaw, T. Shutt, C. Silva, M. Solmaz, V. Solovov, P. Sorensen, S. Stephenson, T. Sumner, M. Szydagis, D. Taylor, W. Taylor, B. Tennyson, P. Terman, D. Tiedt, W. To, M. Tripathi, L. Tvrznikova, S. Uvarov, J. Verbus, R. Webb, J. White, T. Whitis, M. Witherell, F. Wolfs, Jun Xu, K. Yazdani, S. Young, Chao Zhang +100 moresemanticscholar +1 more sourceAsymmetric WIMP dark matter
, 2011 In existing dark matter models with global symmetries the relic abundance of
dark matter is either equal to that of anti-dark matter (thermal WIMP), or
vastly larger, with essentially no remaining anti-dark matter (asymmetric dark
matter).A Belyaev, A Falkowski, A Fitzpatrick, A Sakharov, B Dutta, B Feldstein, C Kouvaris, D Hooper, D Larson, DB Kaplan, DE Kaplan, E Komatsu, E Nardi, EJ Chun, EW Kolb, G Jungman, H An, H Davoudiasl, Ian M. Shoemaker, IM Shoemaker, J Lewin, J Shelton, JA Harvey, JJ Heckman, K Agashe, K Enqvist, K Griest, K Griest, K Kohri, Luca Vecchi, M Blennow, M Drees, M Drees, Michael L. Graesser, MR Buckley, MT Frandsen, MY Khlopov, P Gondolo, P-H Gu, R Allahverdi, R Allahverdi, RJ Scherrer, S Dodelson, S Nussinov, SD Thomas, SM Barr, T Cohen, T Cohen, TA Ryttov, TR Dulaney, TR Dulaney, Z Ahmed +51 morecore +1 more sourceDark Matter and Gravity Waves from a Dark Big Bang [PDF]
, 2023 The Hot Big Bang is often considered as the origin of all matter and
radiation in the Universe. Primordial nucleosynthesis (BBN) provides strong
evidence that the early Universe contained a hot plasma of photons and baryons
with a temperature $T>\text{MeV}$. However, the earliest probes of dark matter
originate from much later times around the epoch of arxiv +1 more sourceFirst Dark Matter Search Results from the XENON1T Experiment. [PDF]
Physical Review Letters, 2017 We report the first dark matter search results from XENON1T, a ∼2000-kg-target-mass dual-phase (liquid-gas) xenon time projection chamber in operation at the Laboratori Nazionali del Gran Sasso in Italy and the first ton-scale detector of this kind.E. Aprile, J. Aalbers, F. Agostini, M. Alfonsi, F. Amaro, M. Anthony, F. Arneodo, P. Barrow, L. Baudis, B. Bauermeister, M. Benabderrahmane, T. Berger, P. Breur, A. Brown, A. Brown, E. Brown, S. Bruenner, G. Bruno, R. Budnik, L. Bütikofer, J. Calvén, J. Cardoso, M. Cervantes, D. Cichon, D. Coderre, A. Colijn, J. Conrad, J. Cussonneau, M. Decowski, P. de Perio, P. Di Gangi, A. Di Giovanni, S. Diglio, G. Eurin, J. Fei, A. Ferella, A. Fieguth, W. Fulgione, A. Gallo Rosso, M. Galloway, F. Gao, M. Garbini, R. Gardner, C. Geis, L. Goetzke, L. Grandi, Z. Greene, C. Grignon, C. Hasterok, E. Hogenbirk, J. Howlett, R. Itay, B. Kaminsky, S. Kazama, G. Kessler, A. Kish, H. Landsman, R. Lang, D. Lellouch, L. Levinson, Q. Lin, S. Lindemann, M. Lindner, F. Lombardi, J. Lopes, A. Manfredini, I. Mariş, T. Marrodán Undagoitia, J. Masbou, F. V. Massoli, D. Masson, D. Mayani, M. Messina, K. Micheneau, A. Molinario, K. Morå, M. Murra, J. Naganoma, K. Ni, U. Oberlack, P. Pakarha, B. Pelssers, R. Persiani, F. Piastra, J. Pienaar, V. Pizzella, M. Piro, G. Plante, N. Priel, L. Rauch, S. Reichard, C. Reuter, B. Riedel, A. Rizzo, S. Rosendahl, N. Rupp, R. Saldanha, J. dos Santos, G. Sartorelli, M. Scheibelhut, S. Schindler, J. Schreiner, M. Schumann, L. Scotto Lavina, M. Selvi, P. Shagin, E. Shockley, M. Silva, H. Simgen, M. Sivers, A. Stein, S. Thapa, D. Thers, A. Tiseni, G. Trinchero, C. Tunnell, M. Vargas, N. Upole, H. Wang, Z. Wang, Y. Wei, C. Weinheimer, J. Wulf, J. Ye, Y. Zhang, T. Zhu +125 moresemanticscholar +1 more sourceDark Matter and Dark Radiation [PDF]
, 2008 We explore the feasibility and astrophysical consequences of a new long-range
U(1) gauge field ("dark electromagnetism") that couples only to dark matter,
not to the Standard Model.E. Kolb, L. B. Okun, L. B. Okun, Lotty Ackerman, Marc Kamionkowski, Matthew R. Buckley, P. J. E. Peebles, Sean M. Carroll +7 morecore +2 more sourcesEffect of Ultralight Dark Matter on $g-2$ of the Electron [PDF]
arXiv, 2023 If dark matter is ultralight, the number density of dark matter is very high
and the techniques of zero-temperature field theory are no longer valid. The
dark matter number density modifies the vacuum giving it a non-negligible
particle occupation number. For fermionic dark matter, this occupation number
can be no larger than one.arxiv