Results 231 to 240 of about 15,996 (294)

Remimazolam Ameliorates Autistic‐Like Behaviors via Suppression of Ferroptosis in VTA Dopaminergic Neurons in a Mouse Model of ASD

open access: yesAdvanced Science, EarlyView.
The ultra‐short‐acting sedative remimazolam has a sustained therapeutic effect on the core symptoms of VPA‐exposed mice. Remimazolam, a GABA agonist, exerts its therapeutic effects by protecting dopamine neurons in the VTA of VPA‐exposed mice. Meanwhile, ferroptosis is the critical mechanism by which remimazolam protects VTA dopaminergic neurons and ...
Yuxin Zhang   +7 more
wiley   +1 more source

Tim1 Deficiency Mediates Gestational Hyperglycemia‐Related Syncytiotrophoblast Dysfunction and Fetal Growth Restriction

open access: yesAdvanced Science, EarlyView.
Hyperglycemia during pregnancy impairs the fusion of trophoblast cells into syncytiotrophoblasts, leading to fetal growth restriction. This impaired fusion is mediated by Tim1 downregulation via hyperglycemia‐induced ROS. Antioxidant therapy during pregnancy promotes syncytiotrophoblast formation by upregulating Tim1 expression, thus alleviating fetal ...
Junsen She   +14 more
wiley   +1 more source

CellPolaris: Transfer Learning for Gene Regulatory Network Construction to Guide Cell State Transitions

open access: yesAdvanced Science, EarlyView.
CellPolaris decodes how transcription factors guide cell fate by building gene regulatory networks from transcriptomic data using transfer learning. It generates tissue‐ and cell‐type‐specific networks, identifies master regulators in cell state transitions, and simulates TF perturbations in developmental processes.
Guihai Feng   +27 more
wiley   +1 more source

Nurr1 Orchestrates Claustrum Development and Functionality

open access: yesAdvanced Science, EarlyView.
Nurr1 (Nr4a2) is the master transcription factor to control claustrum morphogenesis and cell fate decision postmitotically by inhibiting intracellular G‐protein signaling. Nurr1 deficiency alters the transcriptomic profiles of subcortical claustral neurons into neocortical insular neurons, resulting in defected claustrum development, impaired axonal ...
Kuo Yan   +12 more
wiley   +1 more source

DEL‐1 is an Endogenous Senolytic Protein that Inhibits Senescence‐Associated Bone Loss

open access: yesAdvanced Science, EarlyView.
Senescent bone marrow stromal cells accumulate in the aging bone microenvironment, promoting bone degeneration. DEL‐1, an endogenous secreted protein, acts as a natural senolytic that selectively eliminates these cells. By engaging a β3 integrin/CD73/adenosine/p38 MAPK/BCL‐2 pathway, DEL‐1 counters aging‐related bone loss, revealing promising ...
Jong‐Hyung Lim   +11 more
wiley   +1 more source

Home - About - Disclaimer - Privacy