Results 61 to 70 of about 8,734 (205)
Five Classical Elements: Earth, Wood, Fir, Air, Quintessence
A series of artefacts exploring the classical elements of the universe, earth, sun, air, wood, and quintessence, challenge the emotional connection, awareness, sustainable design and material research approaches. The elements are historical, sociological, philosophical and essential matters.
openaire +1 more source
Poly(heptazine) imides (PHIs), a crystalline carbon nitride subclass, intercalate metals to deliver high stability, tunable electronics, and efficient charge separation. These features enable solar‐driven applications such as hydrogen evolution, CO₂ reduction, and organic synthesis.
Gabriel A. A. Diab +6 more
wiley +1 more source
A pore tuning strategy to amplify the multi‐site MOF‐SO2 interactions is proposed to achieve an enhanced trace SO2 capture and chemiresistive sensing in highly stable isostructural DMOFs by annelating benzene rings. This work provides a facile strategy to achieve tailor‐made stable MOF materials for specific multifunctional applications.
Shanghua Xing +9 more
wiley +1 more source
This work reports the self‐assembly of a pyrene derivative into two distinct nanostructures and their application in visible‐light photocatalysis. The two nanostructures exhibit completely different yet complementary photocatalytic activities, promoting either H2 or H2O2 evolution.
Marianna Barbieri +6 more
wiley +1 more source
The chemical composition and band alignment are systematically investigated at the TiO2/InP heterointerface. Thin TiO2 films are deposited by ALD on atomically ordered, P‐terminated p‐InP(100). By combining UPS, XPS, and ab initio molecular dynamics, the atomistic structure and electronic alignment are revealed.
Mohammad Amin Zare Pour +11 more
wiley +1 more source
Selective Membrane for Non‐Aqueous Electrochemical Flow Cells
Sulfonated fixed charge functionalization is increased to improve the conductivity of a cation exchange membrane in a non‐aqueous electrochemical cell. Based on ex situ analyses, the material achieved the highest selectivity for this type of system to date.
Charles R. Leroux +2 more
wiley +1 more source
Laser‐Induced Graphene from Waste Almond Shells
Almond shells, an abundant agricultural by‐product, are repurposed to create a fully bioderived almond shell/chitosan composite (ASC) degradable in soil. ASC is converted into laser‐induced graphene (LIG) by laser scribing and proposed as a substrate for transient electronics.
Yulia Steksova +9 more
wiley +1 more source
Biomaterial Strategies for Targeted Intracellular Delivery to Phagocytes
Phagocytes are essential to a functional immune system, and their behavior defines disease outcomes. Engineered particles offer a strategic opportunity to target phagocytes, harnessing inflammatory modulation in disease. By tuning features like size, shape, and surface, these systems can modulate immune responses and improve targeted treatment for a ...
Kaitlyn E. Woodworth +2 more
wiley +1 more source
3D Concrete Printing of Triply Periodic Minimum Surfaces for Enhanced Carbon Capture and Storage
A 3D‐printable and carbon‐capturing concrete is developed by replacing cement with diatomaceous earth (DE), which enhances rheology, provides hierarchical porosity, and serves as a nucleation site for carbonation. Maximum absorption of 488.7 gCO2 kgcement−1 is achieved in 7 days, a 142% increase over conventional concrete, and the triply periodic ...
Kun‐Hao Yu +9 more
wiley +1 more source
A novel descriptor and a bottom‐up design principle are established to enable the rational design of hydrogen storage materials based on d‐block transition metal single‐atom COFs. By modulating H₂ adsorption through d‐orbital tuning, this approach achieves both high storage capacity and fast kinetics, while revealing a volcano‐type relationship between
Qiuyan Yue +24 more
wiley +1 more source

