Results 261 to 270 of about 1,511,436 (342)

Guided Bone Regeneration Membrane Materials Loaded with Chimeric Nanovesicles Promote Early Bone Defect Regeneration

open access: yesAdvanced Healthcare Materials, EarlyView.
Early bone regeneration is challenged by poor osteogenic microenvironments. We developed a novel guided bone regeneration (GBR) membrane: a plasma‐treated polycaprolactone (PT‐PCL) electrospun nanofiber functionalized with ultrasound sequentially extruded stromal vascular fraction chimeric vesicles (USE‐SCNVs). USE‐SCNVs require less equipment, enhance
Yufan Zhang   +13 more
wiley   +1 more source

Trimethylamine-N-oxide damages astrocytes and lymphatic endothelial cells in the cerebral lymphatic system. [PDF]

open access: yesIBRO Neurosci Rep
Su ML   +8 more
europepmc   +1 more source

Bone‐Derived dECM Hydrogels Support Tunable Microenvironments for In Vitro Osteogenic Differentiation

open access: yesAdvanced Healthcare Materials, EarlyView.
A tunable methacrylated decellularized bone matrix hydrogel (dECM‐MA) is developed to support 3D culture of human osteoblasts. The hydrogel preserves bone‐specific ECM cues and allows precise control over mechanical properties. This system provides a customizable platform for studying osteogenic differentiation and modeling bone tissue environments for
Minne Dekker   +5 more
wiley   +1 more source

A Novel Core–Shell Hydrogel 3D Model for Studying Macrophage Mechanosensing and Foreign Body Giant Cell Formation

open access: yesAdvanced Healthcare Materials, EarlyView.
The foreign body response (FBR) to biomaterials is primarily driven by macrophages, which often fuse into destructive foreign body giant cells (FBGCs). To address the limited understanding of FBGC formation, a novel microscale core–shell hydrogel 3D model is developed using heterogeneous alginate‐collagen microcapsules with varying stiffness, offering ...
Manisha Mahanty   +5 more
wiley   +1 more source

METTL3 mediates atheroprone flow-induced glycolysis in endothelial cells. [PDF]

open access: yesProc Natl Acad Sci U S A
Zhao GJ   +14 more
europepmc   +1 more source

A Novel Brain Penetrable Nanocarrier Delivers Brain‐Derived Neurotrophic Factor to Treat Alzheimer's Disease

open access: yesAdvanced Healthcare Materials, EarlyView.
A novel blood‐brain barrier‐penetrating terpolymer nanoparticle to deliver brain‐derived neurotrophic factor (BDNF) for the treatment of Alzheimer's disease (AD) is designed. The BDNF‐TPN significantly enhances BDNF accumulation in the brain following intravenous injection, reduces apoptosis and neuroinflammation, thus promoting neuronal survival and ...
Lily Yi Li   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy