Results 31 to 40 of about 244,147 (243)
Vitamin D and the Epithelial to Mesenchymal Transition [PDF]
Several studies support reciprocal regulation between the active vitamin D derivative 1α,25‐dihydroxyvitamin D3 (1,25(OH)2D3) and the epithelial to mesenchymal transition (EMT). Thus, 1,25(OH)2D3 inhibits EMT via the induction of a variety of target genes that encode cell adhesion and polarity proteins responsible for the epithelial phenotype and ...
Larriba, María Jesús +2 more
openaire +6 more sources
YAP1::TFE3 mediates endothelial‐to‐mesenchymal plasticity in epithelioid hemangioendothelioma
The YAP1::TFE3 fusion protein drives endothelial‐to‐mesenchymal transition (EndMT) plasticity, resulting in the loss of endothelial characteristics and gain of mesenchymal‐like properties, including resistance to anoikis, increased migratory capacity, and loss of contact growth inhibition in endothelial cells.
Ant Murphy +9 more
wiley +1 more source
Cancer Stem Cells and Epithelial-to-Mesenchymal Transition in Cancer Metastasis.
The cancer stem cell (CSC) concept stands for undifferentiated tumor cells with the ability to initiate heterogeneous tumors. It is also relevant in metastasis and can explain how metastatic tumors mirror the heterogeneity of primary tumors.
Toni Celià-Terrassa, M. Jolly
semanticscholar +1 more source
Modeling hepatic fibrosis in TP53 knockout iPSC‐derived human liver organoids
This study developed iPSC‐derived human liver organoids with TP53 gene knockout to model human liver fibrosis. These organoids showed elevated myofibroblast activation, early disease markers, and advanced fibrotic hallmarks. The use of profibrotic differentiation medium further amplified the fibrotic signature seen in the organoids.
Mustafa Karabicici +8 more
wiley +1 more source
This study integrates transcriptomic profiling of matched tumor and healthy tissues from 32 colorectal cancer patients with functional validation in patient‐derived organoids, revealing dysregulated metabolic programs driven by overexpressed xCT (SLC7A11) and SLC3A2, identifying an oncogenic cystine/glutamate transporter signature linked to ...
Marco Strecker +16 more
wiley +1 more source
Aggressive prostate cancer is associated with pericyte dysfunction
Tumor‐produced TGF‐β drives pericyte dysfunction in prostate cancer. This dysfunction is characterized by downregulation of some canonical pericyte markers (i.e., DES, CSPG4, and ACTA2) while maintaining the expression of others (i.e., PDGFRB, NOTCH3, and RGS5).
Anabel Martinez‐Romero +11 more
wiley +1 more source
Cytoplasmic p21 promotes stemness of colon cancer cells via activation of the NFκB pathway
Cytoplasmic p21 promotes colorectal cancer stem cell (CSC) features by destabilizing the NFκB–IκB complex, activating NFκB signaling, and upregulating BCL‐xL and COX2. In contrast to nuclear p21, cytoplasmic p21 enhances spheroid formation and stemness transcription factor CD133.
Arnatchai Maiuthed +10 more
wiley +1 more source
Protons Sensitize Epithelial Cells to Mesenchymal Transition
Proton radiotherapy has gained more favor among oncologists as a treatment option for localized and deep-seated tumors. In addition, protons are a major constituent of the space radiation astronauts receive during space flights. The potential for these exposures to lead to, or enhance cancer risk has not been well studied. Our objective is to study the
Minli Wang +5 more
openaire +4 more sources
Strength through diversity: how cancers thrive when clones cooperate
Intratumor heterogeneity can offer direct benefits to the tumor through cooperation between different clones. In this review, Kuiken et al. discuss existing evidence for clonal cooperativity to identify overarching principles, and highlight how novel technological developments could address remaining open questions.
Marije C. Kuiken +3 more
wiley +1 more source
Intermediate cell states in epithelial-to-mesenchymal transition
The transition of epithelial cells into a mesenchymal state (epithelial-to-mesenchymal transition or EMT) is a highly dynamic process implicated in various biological processes.
Yutong Sha +5 more
semanticscholar +1 more source

