Results 91 to 100 of about 87,526 (316)
Studies on sialoglycoprotein complexes of human erythrocyte membranes [PDF]
R. W. Stoddart, Su Metcalfe
openalex +1 more source
A poly(hydroxy‐oxazolidone) (PHOx) is synthesized from CO2‐based precursors, enabling the up‐cycling of this waste material. After synthesis, PHOx shows thermoplastic properties, and can therefore be processed by many temperature‐dependent techniques. PHOx is hemocompatible, anti‐adhesive, and biocompatible, which is demonstrated in vitro and in vivo ...
Sofia F. Melo+11 more
wiley +1 more source
Simulation of Mechanical Properties and Intracellular Pressure of Erythrocyte According to Atomic Force Microscopy [PDF]
In the paper we carry out the calculation mechanical properties and intracellular pressure of erythrocytes by finite element method and comparison of these data to the experimental data obtained using atomic force microscopy.
Yu.S. Nagornov, I.V. Zhilyaev
doaj
Covalent Organic Frameworks for Photocatalysis
This review provides an overview of recent advances in covalent organic frameworks (COFs) for photocatalysis, focusing on sustainable energy applications like water splitting, hydrogen peroxide generation, and CO2 and N2 reduction. It discusses design principles, structure‐function relationships, challenges in COF photocatalysis, and strategies to ...
Bikash Mishra+6 more
wiley +1 more source
State‐of‐the‐Art, Insights, and Perspectives for MOFs‐Nanocomposites and MOF‐Derived (Nano)Materials
Different approaches to MOF‐NP composite formation, such as ship‐in‐a‐bottle, bottle‐around‐the‐ship and in situ one‐step synthesis, are used. Owing to synergistic effects, the advantageous features of the components of the composites are beneficially combined, and their individual drawbacks are mitigated.
Stefanos Mourdikoudis+6 more
wiley +1 more source
Interaction of filipin and derivatives with erythrocyte membranes and lipid dispersions: Electron microscopic observations [PDF]
Stephen C. Kinsky+4 more
openalex +1 more source
Machine‐Learning‐Aided Advanced Electrochemical Biosensors
Electrochemical biosensors are highly sensitive, portable, and versatile. Advanced nanomaterials enhance their performance, while machine learning (ML) improves data analysis, minimizes interference, and optimizes sensor design. Despite progress in both fields, their combined potential in diagnostics remains underexplored.
Andrei Bocan+9 more
wiley +1 more source
This review highlights recent progress in piezoelectric materials for regenerative medicine, emphasizing their ability to convert mechanical stimuli into bioelectric signals that promote tissue repair. Key discussions cover the intrinsic piezoelectric properties of biological tissues, co‐stimulation cellular mechanisms for tissue regeneration, and ...
Xinyu Wang+3 more
wiley +1 more source
A type of magnetically responsive artificial cells (ACs) has been developed, demonstrating the loading of mitochondria and self‐enclosure processes to ensure the protection of mitochondrial transport via the bloodstream. The treatment with ACs effectively transplanted mitochondria around the lesion, thereby improving neurological recovery by supporting
Mi Zhou+10 more
wiley +1 more source
Harnessing Photo‐Energy Conversion in Nanomaterials for Precision Theranostics
Harnessing photo‐energy conversion in nanomaterials enables precision theranostics through light‐driven mechanisms such as photoluminescence, photothermal, photoelectric, photoacoustic, photo‐triggered surface‐enhanced Raman scattering (SERS), and photodynamic processes. This review explores six fundamental principles of photo‐energy conversion, recent
Jingyu Shi+4 more
wiley +1 more source