Results 231 to 240 of about 1,021,196 (293)

Allogeneic Immune Cell Perfusion Inhibits the Growth of Vascularized 3D In Vitro Tumor Models, Induces Vascular Regression and Desmoplasia, but Promotes Tumor Cell Invasion

open access: yesAdvanced Science, EarlyView.
This study presents a vascularized 3D tumor model to investigate immune–stromal–tumor interactions under allogeneic PBMC perfusion. While immune cells induced tumor shrinkage, they also promoted vascular regression, stromal activation, and cancer cell invasion.
Alexandra Raab   +8 more
wiley   +1 more source

Real-world insights on a rare disease: adenoid cystic carcinoma of the breast. [PDF]

open access: yesEcancermedicalscience
Hidalgo Filho CM   +5 more
europepmc   +1 more source

Fluorinated Carnitine Derivatives as Tools to Visualise Carnitine Transport and Metabolism

open access: yesAdvanced Science, EarlyView.
Fluorinated carnitines, fluoromethyl carnitine (FMC) and [18F]fluoromethyl carnitine ([18F]FMC), are synthesised and established as powerful probes to interrogate carnitine biology. The multimodal detection facilitated by fluorine labelling, including 19F NMR, mass spectrometry, and positron emission tomography imaging, allowed for visualisation of ...
Richard S. Edwards   +8 more
wiley   +1 more source

A Complex Chromosome Rearrangement Disrupting <i>SYT1</i> Supports Haploinsufficiency as a Cause of Baker-Gordon Syndrome. [PDF]

open access: yesCase Rep Genet
Bertola DR   +6 more
europepmc   +1 more source

Ufmylation‐Deficient DDRGK1 Ameliorates Obesity by Inhibiting FASN‐Mediated Adipocyte Lipogenesis

open access: yesAdvanced Science, EarlyView.
DDRGK1 regulates de novo lipogenesis via stabilization of fatty acid synthase (FASN). DDRGK1‐mediated UFMylation of FASN prevents its ubiquitin–proteasomal degradation. Reduced DDRGK1 expression or mutation at the key UFMylation site enhances FASN degradation and suppresses fatty acid synthesis (FAS), resulting in smaller adipocytes and improved ...
Yin Li   +16 more
wiley   +1 more source

GlycoChat Uncovers Glycan–Lectin Circuits in the Tumor Microenvironment of Pancreatic Cancer

open access: yesAdvanced Science, EarlyView.
Aberrant glycosylation drives cancer progression, yet its role in the tumor microenvironment remains unclear. We developed GlycoChat to map glycan–lectin circuits at single‐cell resolution. We discovered that cancer cells induce immunosuppressive macrophage differentiation and impair phagocytosis through interactions with CLEC10A and SIGLEC3 ...
Dinh Xuan Tuan Anh   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy