Results 51 to 60 of about 25,533 (260)

Photoswitchable Conductive Metal–Organic Frameworks

open access: yesAdvanced Functional Materials, EarlyView.
A conductive material where the conductivity can be modulated remotely by irradiation with light is presented. It is based on films of conductive metal–organic framework type Cu3(HHTP)2 with embedded photochromic molecules such as azobenzene, diarylethene, spiropyran, and hexaarylbiimidazole in the pores.
Yidong Liu   +5 more
wiley   +1 more source

Stable and Dendrite‐Free Zinc Metal Anodes Via Interface Nanoarchitectonics for Aqueous Zinc‐Ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
This review explores Zn anode challenges in aqueous ZIBs, including dendrites, corrosion, and side reactions, and discusses strategies for improvement through Zn anode, electrolyte, and separator modifications to enhance stability and efficiency. Abstract Aqueous rechargeable zinc‐ion batteries (ZIBs) are emerging as promising candidates for next ...
Pragati A. Shinde   +5 more
wiley   +1 more source

Thermomass Theory in the Framework of GENERIC

open access: yesEntropy, 2020
Thermomass theory was developed to deal with the non-Fourier heat conduction phenomena involving the influence of heat inertia. However, its structure, derived from an analogy to fluid mechanics, requires further mathematical verification. In this paper,
Ben-Dian Nie   +3 more
doaj   +1 more source

Optical Control of the Thermal Conductivity in BaTiO3

open access: yesAdvanced Functional Materials, EarlyView.
Light‐driven manipulation of thermal conductivity in archetypal ferroelectric, BaTiO3, offers a novel and effective approach for the dynamical control of the heat flux, with potential applications in thermal management and phonon‐based logic. Abstract Achieving dynamic control over thermal conductivity remains a formidable challenge in condensed matter
Claudio Cazorla   +4 more
wiley   +1 more source

Understanding and Optimizing Li Substitution in P2‐Type Sodium Layered Oxides for Sodium‐Ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
This work explores Li‐substituted P2 layered oxides for Na‐ion batteries by crystallographic and electrochemical studies. The effect of lithium on superstructure orderings, on phase transitions during synthesis and electrochemical cycling and on the interplay of O‐ versus TM‐redox is revealed via various advanced techniques, including semi‐simultaneous 
Mingfeng Xu   +5 more
wiley   +1 more source

Ionic Metal Poly(heptazine Imides) and Single‐Atoms Interplay: Engineered Stability and Performance for Photocatalysis, Photoelectrocatalysis and Organic Synthesis

open access: yesAdvanced Functional Materials, EarlyView.
Poly(heptazine) imides (PHIs), a crystalline carbon nitride subclass, intercalate metals to deliver high stability, tunable electronics, and efficient charge separation. These features enable solar‐driven applications such as hydrogen evolution, CO₂ reduction, and organic synthesis.
Gabriel A. A. Diab   +6 more
wiley   +1 more source

Atomic Size Misfit for Electrocatalytic Small Molecule Activation

open access: yesAdvanced Functional Materials, EarlyView.
This review explores the application and mechanisms of atomic size misfit in catalysis for small molecule activation, focusing on how structural defects and electronic properties can effectively lower the energy barriers of chemical bonds in molecules like H2O, CO2, and N2.
Ping Hong   +3 more
wiley   +1 more source

Copper‐based Materials for Photo and Electrocatalytic Process: Advancing Renewable Energy and Environmental Applications

open access: yesAdvanced Functional Materials, EarlyView.
Cu‐based catalysts as a cornerstone in advancing sustainable energy technologies are fully reviewed in this manuscript, highlighting their potential in photo‐ and electrocatalysis. It includes metallic copper, copper oxides, copper sulfides, copper halide perovskites, copper‐based metal–organic frameworks (MOFs), and covalent organic frameworks (COFs),
Jéssica C. de Almeida   +16 more
wiley   +1 more source

Decoding the Structure of Benzodithiophene Polymers for High‐Efficiency Organic Solar Cells

open access: yesAdvanced Functional Materials, EarlyView.
This study reveals a unique solid mesophase in top‐performing benzodithiophene‐based polymers for solar cells, comprising stacked solid‐like and liquid‐like layers. Combining nanoscale fibrillar domains with amorphous regions, it introduces a new structural paradigm.
Matteo Sanviti   +16 more
wiley   +1 more source

Enhancing Direct Solar Water Splitting via ALD of Multifunctional TiO2/Pt Nanoparticle Coatings With Engineered Interfaces to GaAs/GaInP Tandem Cells

open access: yesAdvanced Functional Materials, EarlyView.
Multifunctional atomic layer deposited coatings and interface treatments enhance direct solar water splitting on GaAs/GaInP tandem cells. Optimized TiO2/Pt nanoparticle bilayers ensure durability and catalytic efficiency with minimal optical losses, while H2 plasma pretreatments maximize photovoltage and interfacial charge extraction.
Tim F. Rieth   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy