Results 171 to 180 of about 2,634,864 (332)

Adaptaquin is selectively toxic to glioma stem cells through disruption of iron and cholesterol metabolism

open access: yesMolecular Oncology, EarlyView.
Adaptaquin selectively kills glioma stem cells while sparing differentiated brain cells. Transcriptomic and proteomic analyses show Adaptaquin disrupts iron and cholesterol homeostasis, with iron chelation amplifying cytotoxicity via cholesterol depletion, mitochondrial dysfunction, and elevated reactive oxygen species.
Adrien M. Vaquié   +16 more
wiley   +1 more source

Patient‐specific pharmacogenomics demonstrates xCT as predictive therapeutic target in colon cancer with possible implications in tumor connectivity

open access: yesMolecular Oncology, EarlyView.
This study integrates transcriptomic profiling of matched tumor and healthy tissues from 32 colorectal cancer patients with functional validation in patient‐derived organoids, revealing dysregulated metabolic programs driven by overexpressed xCT (SLC7A11) and SLC3A2, identifying an oncogenic cystine/glutamate transporter signature linked to ...
Marco Strecker   +16 more
wiley   +1 more source

Aggressive prostate cancer is associated with pericyte dysfunction

open access: yesMolecular Oncology, EarlyView.
Tumor‐produced TGF‐β drives pericyte dysfunction in prostate cancer. This dysfunction is characterized by downregulation of some canonical pericyte markers (i.e., DES, CSPG4, and ACTA2) while maintaining the expression of others (i.e., PDGFRB, NOTCH3, and RGS5).
Anabel Martinez‐Romero   +11 more
wiley   +1 more source

The neural crest‐associated gene ERRFI1 is involved in melanoma progression and resistance toward targeted therapy

open access: yesMolecular Oncology, EarlyView.
ERRFI1, a neural crest (NC)‐associated gene, was upregulated in melanoma and negatively correlated with the expression of melanocytic differentiation markers and the susceptibility of melanoma cells toward BRAF inhibitors (BRAFi). Knocking down ERRFI1 significantly increased the sensitivity of melanoma cells to BRAFi.
Nina Wang   +8 more
wiley   +1 more source

Glycosylated LGALS3BP is highly secreted by bladder cancer cells and represents a novel urinary disease biomarker

open access: yesMolecular Oncology, EarlyView.
Urinary LGALS3BP is elevated in bladder cancer patients compared to healthy controls as detected by the 1959 antibody–based ELISA. The antibody shows enhanced reactivity to the high‐mannose glycosylated variant secreted by cancer cells treated with kifunensine (KIF).
Asia Pece   +18 more
wiley   +1 more source

Home - About - Disclaimer - Privacy