Results 11 to 20 of about 119 (119)

Using a Supramolecular Approach to Engineer Modular Hydrogel Platforms for Culturing Protoplasts – from General Tissue Engineering to Cellular Agriculture

open access: yesAdvanced Biology, EarlyView.
Using supramolecular monomers, various hydrogel culture systems were formulated to culture protoplasts; including 2D, 2.5D, and 3D hydrogels. Depending on the culture platform, bioactive functionalization led to protoplast enlargement (2D and 2.5D) or plasmolysis (3D). This work shows the potential to modularly engineer synthetic platforms for cellular
Maritza M. Rovers   +3 more
wiley   +1 more source

3D Bioprinting of Thick Adipose Tissues with Integrated Vascular Hierarchies

open access: yesAdvanced Functional Materials, Volume 35, Issue 12, March 18, 2025.
An advanced 3D bioprinting technique is used here to create thick adipose tissues with a central, vessel and extensive branching. The construct is made using alginate, gelatin and collagen‐based bioinks. Flow through the complex vessel network is demonstrated as well as its successful integration with a femoral artery following implantation in a rat ...
Idit Goldfracht   +5 more
wiley   +1 more source

Structurally Colored Physically Unclonable Functions with Ultra‐Rich and Stable Encoding Capacity

open access: yesAdvanced Functional Materials, Volume 35, Issue 12, March 18, 2025.
This study reports a design strategy for generating bright‐field resolvable physically unclonable functions with extremely rich encoding capacity coupled with outstanding thermal and chemical stability. The optical response emerges from thickness‐dependent structural color formation in ZnO features, which are fabricated by physical vapor deposition ...
Abidin Esidir   +8 more
wiley   +1 more source

Multi‐Scaled Cellulosic Nanonetworks from Tunicates

open access: yesAdvanced Functional Materials, EarlyView.
Microbial and plant nanonetworks of cellulose have enabled a wide range of high‐performance yet sustainable materials. Herein, a third class of cellulosic nanonetworks is showcased by exploiting the only animal tissue‐producing cellulose nanofibers, i.e., ascidians. An ultrastructure including spherical cells and a microvasculature with diameters of 50–
Mano Govindharaj   +10 more
wiley   +1 more source

Intraoral Drug Delivery: Bridging the Gap Between Academic Research and Industrial Innovations

open access: yesAdvanced Functional Materials, EarlyView.
Intraoral drug delivery offers a promising route for systemic and localized therapies, yet challenges such as enzymatic degradation, limited permeability, and microbial interactions hinder efficacy. This figure highlights innovative strategies—mucoadhesive materials, enzyme inhibitors, and permeation enhancers—to overcome these barriers.
Soheil Haddadzadegan   +4 more
wiley   +1 more source

3D (Bio) Printing Combined Fiber Fabrication Methods for Tissue Engineering Applications: Possibilities and Limitations

open access: yesAdvanced Functional Materials, EarlyView.
Biofabrication aims at providing innovative technologies and tools for the fabrication of tissue‐like constructs for tissue engineering and regenerative medicine applications. By integrating multiple biofabrication technologies, such as 3D (bio) printing with fiber fabrication methods, it would be more realistic to reconstruct native tissue's ...
Waseem Kitana   +2 more
wiley   +1 more source

Stable, Easy‐to‐Handle, Fully Autologous Electrospun Polymer‐Peptide Skin Equivalent for Severe Burn Injuries

open access: yesAdvanced Functional Materials, EarlyView.
A bioengineered skin equivalent composed of electrospun poly(ε‐caprolactone) (PCL) and the bioactive peptide Fmoc‐FRGD is developed for severe burn treatment. This scaffold promotes full‐thickness skin regeneration by supporting cellular adhesion and integration. In‐vitro and in‐vivo studies show enhanced mechanical stability, accelerated wound closure,
Dana Cohen‐Gerassi   +11 more
wiley   +1 more source

Copper‐based Materials for Photo and Electrocatalytic Process: Advancing Renewable Energy and Environmental Applications

open access: yesAdvanced Functional Materials, EarlyView.
Cu‐based catalysts as a cornerstone in advancing sustainable energy technologies are fully reviewed in this manuscript, highlighting their potential in photo‐ and electrocatalysis. It includes metallic copper, copper oxides, copper sulfides, copper halide perovskites, copper‐based metal–organic frameworks (MOFs), and covalent organic frameworks (COFs),
Jéssica C. de Almeida   +16 more
wiley   +1 more source

Green Solvent Enabled Perovskite Ink for Ambient‐Air‐Processed Efficient Inkjet‐Printed Perovskite Solar Cells

open access: yesAdvanced Functional Materials, EarlyView.
This study explores an eco‐friendly solvent with 1,3‐dimethyl‐2‐imidazolidinone for developing perovskite ink, enhancing grain size and formation of purer phase perovskite. The inkjet‐printed perovskite solar cells demonstrated a remarkable improvement in device power conversion efficiency from 14.6% to almost 17.8%, highlighting sustainable innovation
Vinayak Vitthal Satale   +6 more
wiley   +1 more source

Bioinspired Shape Reconfigurable, Printable, and Conductive “E‐Skin” Patch with Robust Antibacterial Properties for Human Health Sensing

open access: yesAdvanced Functional Materials, EarlyView.
In this article, Hojin Kim, Sayan Deb Dutta, and co‐workers report a shape‐reconfigurable, 3D printable, and highly adhesive slime‐like ‘electronic skin’ or ‘E‐skin’ patch for human health sensing and tissue engineering applications. The dual reinforcement of hydrogel patch with carbon nanotubes (CNTs) and cellulose nanocrystals (CNCs) improve the ...
Hojin Kim   +6 more
wiley   +1 more source

Home - About - Disclaimer - Privacy