Results 161 to 170 of about 402,702 (333)

Microphysiological Systems of Lymphatics and Immune Organs

open access: yesAdvanced Healthcare Materials, EarlyView.
This review surveys recent progress in engineering lymphatic microenvironments and immune organoids within microphysiological systems, emphasizing innovative strategies to recreate the biochemical and biophysical complexity of native lymphatic tissues.
Ishita Jain   +2 more
wiley   +1 more source

Development of a Synthetic 3D Platform for Compartmentalized Kidney In Vitro Disease Modeling

open access: yesAdvanced Healthcare Materials, EarlyView.
A fully synthetic, compartmentalized 3D kidney disease model is introduced. The kidney model combines a PEG‐based hydrogel matrix with anisotropic, enzymatically degradable rod‐shaped microgels to spatially arrange a triple co‐culture of key renal epithelial, endothelial, and fibroblast cells.
Ninon Möhl   +8 more
wiley   +1 more source

Geometrical Designs in Volumetric Bioprinting to Study Cellular Behaviors in Engineered Constructs

open access: yesAdvanced Healthcare Materials, EarlyView.
Curvature and spatial confinement guide cell behavior in volumetrically printed 3D constructs. Endothelial cells align and spread along specific geometries, while metastatic osteosarcoma cells proliferate independently of structural cues. Label‐free holographic microscopy captures real‐time, long‐term cell–material interactions, highlighting Gel‐PEG's ...
Julia Simińska‐Stanny   +3 more
wiley   +1 more source

A 3D Bioprinted Spheroid‐Laden dECM‐Enriched Osteosarcoma Model for Enhanced Drug Testing and Therapeutic Discovery

open access: yesAdvanced Healthcare Materials, EarlyView.
A 3D biomimetic OS model was developed by bioprinting an OS‐cell‐derived dECM‐enriched bioink with OS spheroids incorporated. The model showed upregulation of known OS prognostic markers and increased resistance to doxorubicin, compared to 2D cultures and scaffold‐free spheroids, making this a more clinically relevant platform for drug discovery ...
Margarida F. Domingues   +6 more
wiley   +1 more source

Decellularized Extracellular Matrix (dECM) in Tendon Regeneration: A Comprehensive Review

open access: yesAdvanced Healthcare Materials, EarlyView.
Decellularized Extracellular Matrix (dECM) offers a promising solution by replicating the native tendon microenvironment and promoting regeneration. This review highlights advances in the decellularization methods, as well as their integration with emerging technologies and translational progress in tendon tissue engineering.
Kumaresan Sakthiabirami   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy