Results 81 to 90 of about 263,515 (247)
The Space Within: How Architected Voids Promote Tissue Formation
This review explores the role of void spaces in tissue engineering scaffolds and examines four key methods for introducing porosity into hydrogels at different scales. It discusses sacrificial templating, microgels, phase separation, and 3D printing, highlighting principles, advantages, and limitations. It also addresses emerging strategies integrating
Anna Puiggalí‐Jou +3 more
wiley +1 more source
Multiphysics‐Driven Assembly of Biomimetic Vesicles
Artificial extracellular vesicles, derived from cell membranes, are manufactured using a multiphysics‐integrated microfluidic platform that combines nanoknife membrane rupture, herringbone chaotic mixing, and acoustothermal modulation. This standardizable workflow enables the predictable control of vesicle formation and therapeutic loading, while ...
Timofei Solodko +16 more
wiley +1 more source
A novel sample holder compatible with the Zeiss Lightsheet 7 microscope improves imaging of spheroids embedded in collagen matrices. By enabling dual‐sided illumination, it enhances image quality and quantitative analysis of migrating cells. This method advances 3D light sheet microscopy for studying tumor invasion and therapeutic responses.
Masoumeh Mohamadian Namaqi +5 more
wiley +1 more source
Self-assembling paclitaxel-mediated stimulation of tumor-associated macrophages for postoperative treatment of glioblastoma [PDF]
Feihu Wang +19 more
openalex +1 more source
This review explores recent advances in digital micromirror device (DMD)‐based lithography, focusing on its programmable light modulation, multi‐material compatibility, and dimensional patterning strategies. It highlights innovations from optical system design to materials integration and multifunctional applications, positioning DMD lithography as a ...
Yubin Lee +5 more
wiley +1 more source
Midkine promotes glioblastoma progression via PI3K-Akt signaling [PDF]
Beiquan Hu +8 more
openalex +1 more source
Hydrogel Confinement Strategies for 3D Cell Culture in Microfluidic Systems
Hydrogel confinement structures are key to organizing 3D cell cultures in microfluidic devices. This review classifies five structural strategies (micropillar, phaseguide, porous membrane, stepped‐height, and support‐free) and examines their trade‐offs alongside fabrication methods.
Soohyun Kim, Min Seok Lee, Sung Kyun Lee
wiley +1 more source
Background/Objective: We aimed to elucidate the roles of ferroptosis-associated differentially expressed genes (DEGs) in glioblastoma and provide a comprehensive resource for researchers in the field of glioblastoma cell ferroptosis. Methods: We used RNA
Zijiang Yang +3 more
doaj +1 more source
Glioblastoma is the most common and malignant tumour that occurs primarily in nervous system and has a high morbidity. Research on glioblastoma has recently focused on human cytomegalovirus, belonging to the beta subfamily of Herpesviridae that plays ...
Yan Wang +6 more
doaj +1 more source
Modeling the blood–brain tumor barrier is challenging due to complex interactions between brain microvasculature and glioma cells. We present two‐photon polymerized 3D micro‐porous capillary‐like structures that support endothelial alignment, cytoskeletal organization, and pericyte‐endothelial‐glioma tri‐cultures.
Nastaran Barin +9 more
wiley +1 more source

