Results 61 to 70 of about 1,809 (166)
Hypercyclictty and Countable Hypercyclicity for Adjoint of Operators
Let be an infinite dimensional separable complex Hilbert space and let , where is the Banach algebra of all bounded linear operators on . In this paper we prove the following results. If is a operator, then 1.
Baghdad Science Journal
doaj +1 more source
J-class weighted shifts on the space of bounded sequences of complex numbers
We provide a characterization of $J$-class and $J^{mix}$-class unilateral weighted shifts on $l^{\infty}(\mathbb{N})$ in terms of their weight sequences. In contrast to the previously mentioned result we show that a bilateral weighted shift on $l^{\infty}
Costakis, George, Manoussos, Antonios
core +1 more source
Hypercyclic operators failing the Hypercyclicity Criterion on classical Banach spaces
Let \(X\) be a topological vector space over \(\mathbb{R}\) or \(\mathbb{C}\). A (continuous, linear) operator \(T:X \to X\) is said to be hypercyclic if there exists some \(x \in X\) whose \(T\)-orbit \(\{T^n x: n\in{\mathbb{N}}\}\) is dense in \(X\). In [J.~Funct.~Anal.\ 99, 179--190 (1991; Zbl 0758.47016)], \textit{D.\,Herrero} posed the problem of ...
Bayart, Frédéric, Matheron, Etienne
openaire +2 more sources
Metric Semigroups and Groups of Multisets
We investigate the algebraic and topological properties of sets of complex multisets associated with Banach spaces having symmetric bases. We consider algebraic structures on the sets of multisets and compare some natural metrics on the (semi)groups of ...
D.Y. Dolishniak, A.V. Zagorodnyuk
doaj +1 more source
On invertible hypercyclic operators [PDF]
Let A A be an invertible (bounded linear) operator acting on a complex Banach space X \mathcal {X} . A A is called hypercyclic if there is a vector y y in X \mathcal {X} such that the orbit Orb ( A ;
Herrero, Domingo A., Kitai, Carol
openaire +2 more sources
Invertible Subspace-Hypercyclic Operators
A bounded linear operator on a Banach space X is called subspace-hypercyclic for a subspace M if Orb(T, x) \ M is dense in M for a vector x 2 M. In this paper we give conditions under which an operator is M-hypercyclic.
S. Talebi, B. Yousefi, M. Asadipour
doaj
Tuples with Property of Cyclicity Criterions
In this paper we give conditions under which a tuple of operators satisfying the hypercyclicity, supercyclicity and cyclicity criterions.
M. J. Ataei∗, B. Yousefi
doaj
Dynamics, Operator Theory, and Infinite Holomorphy
Abstract and Applied Analysis, Volume 2014, Issue 1, 2014.
Alfred Peris +3 more
wiley +1 more source
Free dense subgroups of holomorphic automorphisms [PDF]
We show the existence of free dense subgroups, generated by 2 elements, in the holomorphic shear and overshear group of complex-Euklidean space and extend this result to the group of holomorphic automorphisms of Stein manifolds with Density Property ...
Erlend, Fornæss Wold, Rafael B. Andrist
core
Spaces that admit hypercyclic operators with hypercyclic adjoints [PDF]
A continuous linear operator T : X → X T:X\to X is hypercyclic if there is an x ∈ X x\in X such that the orbit { T n x } n ≥ 0 \
openaire +1 more source

