Results 281 to 290 of about 1,650,706 (352)

New Insights into Atonic Postpartum Hemorrhage: Animal Model Construction Based on Placental Nanodelivery Systems

open access: yesAdvanced Healthcare Materials, EarlyView.
This study develops a placenta‐targeted nanodelivery system co‐loading HMGB1 protein and the NLRP3 agonist nigericin to establish an animal model of atonic postpartum hemorrhage. The model accurately recapitulates clinical phenotypes, including prolonged labor and uterine contractility dysfunction, while revealing inflammatory activation in placental ...
Jiangxue Qu   +10 more
wiley   +1 more source

Ferroptosis resistance-related TEP1 as a novel prognostic biomarker involved in immune cell infiltration and tumour progression in glioblastoma. [PDF]

open access: yesCancer Cell Int
Chen K   +12 more
europepmc   +1 more source

Enhancing Magnetic Hyperthermia at the Cell Membrane by Anchoring 92R‐Functionalized Magnetic Nanoparticles to Low‐Endocytic CCR9 Surface Receptors

open access: yesAdvanced Healthcare Materials, EarlyView.
We present a strategy to enhance magnetic hyperthermia therapy by modulating nanoparticle–cell interactions. Antibody‐functionalized magnetic nanoparticles targeting the low‐internalizing CCR9 receptor enable spatially controlled membrane anchoring, reducing aggregation and maximizing heat generation under alternating magnetic fields.
David Egea‐Benavente   +5 more
wiley   +1 more source

A Hierarchically Structured, Stretchable, Anti‐Biofouling Encapsulation for Biodegradable Electronics

open access: yesAdvanced Healthcare Materials, EarlyView.
A soft, stretchable, anti‐biofouling encapsulant is developed by integrating organosilicon nanowire networks with microstructured biodegradable elastomers. The hierarchical surface exhibits superhydrophobicity and enhances water barrier properties by 420% over pristine polymers, while preserving mechanical integrity.
Won Bae Han   +7 more
wiley   +1 more source

Living Materials Approach for In Situ Bio‐Polymers Production Using Bacillus Paralicheniformis in Microneedles

open access: yesAdvanced Healthcare Materials, EarlyView.
Dissolvable microneedle (MN) device containing Bacillus paralicheniformis. The polymeric matrix encapsulates and protects the bacteria, preserving their viability while enabling in situ production and release of γ‐polyglutamic acid. The bacteria are delivered into the skin via 500 µm‐long microneedles, and remain detectable on the skin 24 h post ...
Caroline Hali Alperovitz   +3 more
wiley   +1 more source

Home - About - Disclaimer - Privacy