Results 191 to 200 of about 1,083,097 (291)

Digitonin‐Loaded Nanoscale Metal–Organic Framework for Mitochondria‐Targeted Radiotherapy‐Radiodynamic Therapy and Disulfidptosis

open access: yesAdvanced Materials, EarlyView.
A mitochondria‐targeted cationic nanoscale metal organic framework shows strong radiotherapy‐radiodynamic therapy effects and selectively releases digitonin in acidic tumor microenvironments to induce disulfidptosis of cancer cells and downregulate immune checkpoints in cancer and T cells, thereby eliciting strong antitumor immunity to effectively ...
Wenyao Zhen   +7 more
wiley   +1 more source

Role of the innate immune system in host defence against bacterial infections: focus on the Toll‐like receptors [PDF]

open access: green, 2007
Barbara Albiger   +3 more
openalex   +1 more source

Rational Design of Metal–Organic Frameworks for Pancreatic Cancer Therapy: from Machine Learning Screening to In Vivo Efficacy

open access: yesAdvanced Materials, EarlyView.
This work explores the MOF landscape to select a single, optimal candidate for successfully delivering cancer drugs (gemcitabine, paclitaxel, SN‐38) into tough pancreatic tumors. Machine learning and simulations guide this search, demonstrating colloidal stability, excellent biocompatibility, cellular uptake, and sustained release.
Francesca Melle   +9 more
wiley   +1 more source

Editorial: The innate immune system in rheumatoid arthritis. [PDF]

open access: yesFront Immunol, 2022
Chen Z   +3 more
europepmc   +1 more source

Engineering CAR‐T Therapeutics for Enhanced Solid Tumor Targeting

open access: yesAdvanced Materials, EarlyView.
CART cell therapy has proven effective for blood cancers but struggles with solid tumors due to diverse antigens and complex environments. Recent efforts focus on improving CAR design and validation platforms. Advances in protein engineering, machine learning, and organoid systems aim to enhance CAR‐T therapy against solid tumors.
Danqing Zhu   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy