Results 211 to 220 of about 3,771,587 (392)

SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase

open access: yesProceedings of the National Academy of Sciences of the United States of America, 2001
B. Bennett   +12 more
semanticscholar   +1 more source

Recurrent cancer‐associated ERBB4 mutations are transforming and confer resistance to targeted therapies

open access: yesMolecular Oncology, EarlyView.
We show that the majority of the 18 analyzed recurrent cancer‐associated ERBB4 mutations are transforming. The most potent mutations are activating, co‐operate with other ERBB receptors, and are sensitive to pan‐ERBB inhibitors. Activating ERBB4 mutations also promote therapy resistance in EGFR‐mutant lung cancer.
Veera K. Ojala   +15 more
wiley   +1 more source

Peroxidasin enables melanoma immune escape by inhibiting natural killer cell cytotoxicity

open access: yesMolecular Oncology, EarlyView.
Peroxidasin (PXDN) is secreted by melanoma cells and binds the NK cell receptor NKG2D, thereby suppressing NK cell activation and cytotoxicity. PXDN depletion restores NKG2D signaling and enables effective NK cell–mediated melanoma killing. These findings identify PXDN as a previously unrecognized immune evasion factor and a potential target to improve
Hsu‐Min Sung   +17 more
wiley   +1 more source

Redox regulation meets metabolism: targeting PRDX2 to prevent hepatocellular carcinoma

open access: yesMolecular Oncology, EarlyView.
PRDX2 acts as a central redox hub linking metabolic dysfunction‐associated steatohepatitis (MASH) to hepatocellular carcinoma (HCC). In normal hepatocytes, PRDX2 maintains redox balance and metabolic homeostasis under oxidative stress. In contrast, during malignant transformation, PRDX2 promotes oncogenic signaling, stemness, and tumor initiation ...
Naroa Goikoetxea‐Usandizaga   +2 more
wiley   +1 more source

Curation of the Fasciola hepatica kinome as a resource for drug target discovery. [PDF]

open access: yesBMC Genomics
Ajmera S   +3 more
europepmc   +1 more source

Editorial: Cell and Developmental Signalling in Neuroblastoma

open access: yesFrontiers in Cell and Developmental Biology, 2023
Rafael Pulido   +3 more
doaj   +1 more source

Dammarenediol II enhances etoposide‐induced apoptosis by targeting O‐GlcNAc transferase and Akt/GSK3β/mTOR signaling in liver cancer

open access: yesMolecular Oncology, EarlyView.
Etoposide induces DNA damage, activating p53‐dependent apoptosis via caspase‐3/7, which cleaves PARP1. Dammarenediol II enhances this apoptotic pathway by suppressing O‐GlcNAc transferase activity, further decreasing O‐GlcNAcylation. The reduction in O‐GlcNAc levels boosts p53‐driven apoptosis and influences the Akt/GSK3β/mTOR signaling pathway ...
Jaehoon Lee   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy