Results 321 to 330 of about 515,300 (403)

The CaV1.2 L-type calcium channel regulates bone homeostasis in the middle and inner ear. [PDF]

open access: yesBone, 2019
Cao C   +8 more
europepmc   +1 more source

A Smart Bio‐Battery Facilitates Diabetic Bone Defect Repair Via Inducing Macrophage Reprogramming and Synergistically Modulating Bone Remodeling Coupling

open access: yesAdvanced Functional Materials, EarlyView.
This research presents a novel implantable bio‐battery, GF‐OsG, tailored for diabetic bone repair. GF‐OsG generates microcurrents in high‐glucose conditions to enhance vascularization, shift macrophages to the M2 phenotype, and regulate immune responses.
Nanning Lv   +10 more
wiley   +1 more source

Microdomain-Specific Modulation of L-Type Calcium Channels Leads to Triggered Ventricular Arrhythmia in Heart Failure

open access: green, 2016
Jose L. Sanchez‐Alonso   +13 more
openalex   +2 more sources

Coupled Ferroelectric–Photoelectrochemical in Water Reduction Over BiFeO3 Thin Film Heterostructure Modulated by Rare‐Earth Doping

open access: yesAdvanced Functional Materials, EarlyView.
Gd‐doped BFO (BGFO) exhibits a ∼2‐order reduction in leakage current owing to its lowest content of oxygen vacancies. This leads to a ∼2.5‐fold increase in remnant polarization. These improvements in BGFO effectively boost charge separation and transportation, resulting in the greatest incident photon‐to‐current efficiency of 12.9 ± 0.73% and a ∼1.5 ...
Ming‐Wei Chu   +7 more
wiley   +1 more source

CaV1.2 and CaV1.3 neuronal L‐type calcium channels: differential targeting and signaling to pCREB

open access: green, 2006
Hua Zhang   +5 more
openalex   +2 more sources

Region‐to‐Region Unidirectional Connection In Vitro Brain Model for Studying Directional Propagation of Neuropathologies

open access: yesAdvanced Functional Materials, EarlyView.
A unidirectional cerebral organoid–organoid neural circuit is established using a microfluidic platform, enabling controlled directional propagation of electrical signals, neuroinflammatory cues, and neurodegenerative disease–related proteins between spatially separated organoids.
Kyeong Seob Hwang   +9 more
wiley   +1 more source

High‐Spatiotemporal‐Resolution Transparent Thermoelectric Temperature Sensor Arrays Reveal Temperature‐Dependent Windows for Reversible Photothermal Neuromodulation

open access: yesAdvanced Functional Materials, EarlyView.
Thermoelectric temperature sensors are developed that directly measure heat changes during optical‐based neural stimulation with millisecond precision. The sensors reveal the temperature windows for safe reversible neural modulation: 1.4–4.5 °C enables reversible neural inhibition, while temperatures above 6.1 °C cause permanent thermal damage.
Junhee Lee   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy