Results 41 to 50 of about 37,235 (219)
Biomaterial Strategies for Targeted Intracellular Delivery to Phagocytes
Phagocytes are essential to a functional immune system, and their behavior defines disease outcomes. Engineered particles offer a strategic opportunity to target phagocytes, harnessing inflammatory modulation in disease. By tuning features like size, shape, and surface, these systems can modulate immune responses and improve targeted treatment for a ...
Kaitlyn E. Woodworth +2 more
wiley +1 more source
The only cytogenetic aberration defining a myelodysplastic syndrome subtype is the deletion of the long arm of chromosome 5, which, along with morphological features, leads to the diagnosis of myelodysplastic syndrome with isolated deletion of the long ...
Manja Meggendorfer +3 more
doaj +1 more source
The pH‐sensitive His6‐SWNTs, which is functionalized with oligohistidine, can deliver STTM396 molecules into callus cells. The STTM396–SWNT complex treatments enhance shoot regeneration efficiency by regulating the miR396‐GRF module in Arabidopsis and tomato calli.
Yeong Yeop Jeong +7 more
wiley +1 more source
Electrosynthesis of Bioactive Chemicals, From Ions to Pharmaceuticals
This review discusses recent advances in electrosynthesis for biomedical and pharmaceutical applications. It covers key electrochemical materials enabling precise delivery of ions and small molecules for cellular modulation and disease treatment, alongside catalytic systems for pharmaceutical synthesis.
Gwangbin Lee +4 more
wiley +1 more source
Mesoporous Bioactive Glasses: A Powerful Tool in Tissue Engineering and Drug Delivery
This work is a comprehensive revision of bioactive glasses (BGs), pioneered by Prof. L.L. Hench, which are key in bone repair and regenerative medicine. Sol–gel methods and mesoporous designs enhanced their bioactivity, ions, and drug delivery. BGs now support gene therapy and 3D‐printed scaffolds, enabling personalized, multifunctional treatments in ...
Natividad Gómez‐Cerezo +3 more
wiley +1 more source
Granular Hydrogels as Modular Biomaterials: From Structural Design to Biological Responses
Granular hydrogels are now emerging as promising biomaterials due to their inherent microporousity, injectability, and modularity. They have shown improvements in cell viability and migration, cellular/tissue infiltration, host tissue integration, mitigated foreign body response, and tissue regeneration.
Asmasadat Vaziri +6 more
wiley +1 more source
We present a strategy to enhance magnetic hyperthermia therapy by modulating nanoparticle–cell interactions. Antibody‐functionalized magnetic nanoparticles targeting the low‐internalizing CCR9 receptor enable spatially controlled membrane anchoring, reducing aggregation and maximizing heat generation under alternating magnetic fields.
David Egea‐Benavente +5 more
wiley +1 more source

