Results 41 to 50 of about 169 (168)
Electric Pulse Regulated MXene Based Nanozymes for Integrative Bioelectricity Immuno‐Cancer Therapy
MXenzyme‐mediated bioelectricity cancer therapy (MXenzyme‐BECT) enhances cancer cell death through irreversible depolarization, ion channel disruption, ROS generation, and immunogenic cell death. Computational simulations reveal the electrical mechanisms by which MXenzyme acts on single cells and support to predict treatment parameters. Next‐generation
Sanghee Lee+6 more
wiley +1 more source
This review highlights recent advances in engineering artificial antigen‐presenting cells (aAPCs) as alternatives to dendritic cells for T cell expansion. Key design principles inspired by the immunological synapse are discussed, with emphasis on strategies for polyclonal and antigen‐specific T cell expansion.
Nguyen Thi Nguyen, Yu Seok Youn
wiley +1 more source
This review highlights emerging bioengineering strategies for treating neointimal hyperplasia in the peripheral vasculature, focusing on approaches that promote re‐endothelialization, modulate smooth muscle cell phenotype, reduce inflammation, mitigate oxidative stress, and optimize biomechanical compliance.
Nikita Wilson John+5 more
wiley +1 more source
Most in vitro cancer models lack cellular diversity, functional complexity, and clinical relevance. This work highlights the generation of an innovative dynamic tetraculture with autologous patient‐derived cells within a vascularized tumor‐on‐chip, as well as the recapitulation of endothelial anergy features induced by the tumor microenvironment ...
Christine Lansche+16 more
wiley +1 more source
Glucocorticoids Alter Bone Microvascular Barrier via MAPK/Connexin43 Mechanisms
Osteoporosis induced by Glucocorticoids (GCs) is a common complication of long‐term GC use in patients with inflammatory and autoimmune conditions, often leading to an increased fracture risk. A 3D bicellular endo‐osteo microfluidic platform is developed to explore pathogenic mechanisms underlying GCs‐induced osteoporosis, highlighting a novel MAPK ...
Eun‐Jin Lee+10 more
wiley +1 more source
CD97 is a member of the EGF-TM7 family of adhesion G protein-coupled receptors (GPCRs) broadly expressed on leukocytes. CD97 interacts with several cellular ligands via its N-terminal epidermal growth factor (EGF)-like domains. To understand the biological function of CD97, monoclonal antibodies (mAbs) specific for individual EGF domains have been ...
Jörg Hamann+8 more
openaire +4 more sources
Rod‐shaped particles outperform spherical particles of the same volume in preventing neutrophil infiltration to inflamed areas, both in vitro and in vivo. This therapeutic effectiveness is attributed to better cell targeting and decreased cell motility, resulting from the geometry‐driven phagocytosis and inhibited actin polymerization.
M. Valentina Guevara+7 more
wiley +1 more source
AIMSPec‐LoC is a novel lab‐on‐a‐chip platform integrating size‐based extracellular vesicle (EVs) separation with label‐free Raman spectroscopy and AI‐powered classification via SKiNET. This high‐throughput, portable system enables real‐time, multiplexed molecular fingerprinting of EVs from biofluids, offering transformative potential for early, non ...
Emma Buchan+3 more
wiley +1 more source
Immunosuppressive Formulations for Immunological Defense against Traumatic Brain Injury
A novel subcutaneous formulation combining alpha‐ketoglutarate, glycolysis inhibitor PFK15, and a myelin peptide reduces inflammation in a mouse TBI model. This formulation promotes regulatory immune cells, enhances autophagy, and improves motor function, suggesting its potential as a prophylactic immunosuppressive therapy to mitigate TBI‐induced ...
Kelly Lintecum+28 more
wiley +1 more source