Results 61 to 70 of about 1,143,398 (157)

Gradual Changes in Functional Time Series

open access: yesJournal of Time Series Analysis, EarlyView.
ABSTRACT We consider the problem of detecting gradual changes in the sequence of mean functions from a not necessarily stationary functional time series. Our approach is based on the maximum deviation (calculated over a given time interval) between a benchmark function and the mean functions at different time points.
Patrick Bastian, Holger Dette
wiley   +1 more source

Change Point Analysis for Functional Data Using Empirical Characteristic Functionals

open access: yesJournal of Time Series Analysis, EarlyView.
ABSTRACT We develop a new method to detect change points in the distribution of functional data based on integrated CUSUM processes of empirical characteristic functionals. Asymptotic results are presented under conditions allowing for low‐order moments and serial dependence in the data establishing the limiting null‐distribution of the proposed test ...
Lajos Horváth   +2 more
wiley   +1 more source

A Renewal Theorem for Strongly Ergodic Markov Chains in Dimension $d\geq3$ and Centered Case

open access: yes, 2010
In dimension $d\geq3$, we present a general assumption under which the renewal theorem established by Spitzer for i.i.d. sequences of centered nonlattice r.v. holds true. Next we appeal to an operator-type procedure to investigate the Markov case. Such a
Guibourg, Denis, Hervé, Loïc
core   +1 more source

Nonparametric Detection of a Time‐Varying Mean

open access: yesJournal of Time Series Analysis, EarlyView.
ABSTRACT We propose a nonparametric portmanteau test for detecting changes in the unconditional mean of a univariate time series which may display either long or short memory. Our approach is designed to have power against, among other things, cases where the mean component of the series displays abrupt level shifts, deterministic trending behaviour ...
Fabrizio Iacone, A. M. Robert Taylor
wiley   +1 more source

Detecting Relevant Deviations From the White Noise Assumption for Non‐Stationary Time Series

open access: yesJournal of Time Series Analysis, EarlyView.
ABSTRACT We consider the problem of detecting deviations from a white noise assumption in time series. Our approach differs from the numerous methods proposed for this purpose with respect to two aspects. First, we allow for non‐stationary time series. Second, we address the problem that a white noise test is usually not performed because one believes ...
Patrick Bastian
wiley   +1 more source

Adaptive Estimation for Weakly Dependent Functional Times Series

open access: yesJournal of Time Series Analysis, EarlyView.
ABSTRACT We propose adaptive mean and autocovariance function estimators for stationary functional time series under 𝕃p−m‐approximability assumptions. These estimators are designed to adapt to the regularity of the curves and to accommodate both sparse and dense data designs.
Hassan Maissoro   +2 more
wiley   +1 more source

Functional Vašiček Model

open access: yesJournal of Time Series Analysis, EarlyView.
ABSTRACT We propose a new formulation of the Vašičekmodel within the framework of functional data analysis. We treat observations (continuous‐time rates) within a suitably defined trading day as a single statistical object. We then consider a sequence of such objects, indexed by day.
Piotr Kokoszka   +4 more
wiley   +1 more source

Density‐Valued ARMA Models by Spline Mixtures

open access: yesJournal of Time Series Analysis, EarlyView.
ABSTRACT This paper proposes a novel framework for modeling time series of probability density functions by extending autoregressive moving average (ARMA) models to density‐valued data. The method is based on a transformation approach, wherein each density function on a compact domain [0,1]d$$ {\left[0,1\right]}^d $$ is approximated by a B‐spline ...
Yasumasa Matsuda, Rei Iwafuchi
wiley   +1 more source

A Note on Local Polynomial Regression for Time Series in Banach Spaces

open access: yesJournal of Time Series Analysis, EarlyView.
ABSTRACT This work extends local polynomial regression to Banach space‐valued time series for estimating smoothly varying means and their derivatives in non‐stationary data. The asymptotic properties of both the standard and bias‐reduced Jackknife estimators are analyzed under mild moment conditions, establishing their convergence rates.
Florian Heinrichs
wiley   +1 more source

Measure‐valued processes for energy markets

open access: yesMathematical Finance, Volume 35, Issue 2, Page 520-566, April 2025.
Abstract We introduce a framework that allows to employ (non‐negative) measure‐valued processes for energy market modeling, in particular for electricity and gas futures. Interpreting the process' spatial structure as time to maturity, we show how the Heath–Jarrow–Morton approach can be translated to this framework, thus guaranteeing arbitrage free ...
Christa Cuchiero   +3 more
wiley   +1 more source

Home - About - Disclaimer - Privacy