Results 111 to 120 of about 73,898 (290)
Quantum sensing reveals intricate patterns linking endo‐lysosomal maturation to cardiac fibrosis progression, highlighting complexity in cellular remodeling. This study investigates fibroblast‐to‐myofibroblast transition under cell aging, stiffness, and TGF‐β stimulation, comparing nanodiamond uptake, endo‐lysosomal dynamics, and free radical ...
Aldona Mzyk +3 more
wiley +1 more source
Traveling waves for a microscopic model of traffic flow
We consider the follow-the-leader model for traffic flow. The position of each car $z_i(t)$ satisfies an ordinary differential equation, whose speed depends only on the relative position $z_{i+1}(t)$ of the car ahead. Each car perceives a local density $ _i(t)$. We study a discrete traveling wave profile $W(x)$ along which the trajectory $( _i(t),z_i(
Shen, Wen, Shikh-Khalil, Karim
openaire +3 more sources
In this study, we produced HfN‐based nanoparticles via femtosecond laser ablation in acetone. The nanoparticles exhibit a red‐shifted plasmonic resonance in the NIR‐I window, colloidal stability after coating with polyethyleneglycol, and excellent biocompatibility. The photothermal and X‐ray sensitization therapeutic effects were demonstrated for tumor
Julia S. Babkova +15 more
wiley +1 more source
A Human‐Based Skin‐Lymphoreticular Model‐on‐Chip to Emulate Inflammatory Skin Conditions
A human‐based lymphoreticular (LR) model was developed through guided self‐assembly and integrated in a skin‐lymphoreticular co‐culture in a microfluidic organ‐on‐chip to mimic interactions between skin and its draining lymph nodes. The human‐based skin‐lymphoreticular model resembles a minimally functional unit that allows to study interactions ...
Zheng Tan +3 more
wiley +1 more source
Calibrating Microscopic Traffic Models with Macroscopic Data
Traffic microsimulation is a crucial tool that uses microscopic traffic models, such as car-following and lane-change models, to simulate the trajectories of individual agents. This digital platform allows for the assessment of the impact of emerging technologies on transportation system performance.
Yanbing Wang +3 more
openaire +3 more sources
Microphysiological Systems of Lymphatics and Immune Organs
This review surveys recent progress in engineering lymphatic microenvironments and immune organoids within microphysiological systems, emphasizing innovative strategies to recreate the biochemical and biophysical complexity of native lymphatic tissues.
Ishita Jain +2 more
wiley +1 more source
This paper addresses the modeling challenge of significant asymmetry between acceleration and deceleration processes in car-following behavior by proposing an Asymmetric Acceleration and Deceleration Car Following (AAD-CF) model.
Han Xing, Gangqiao Wang
doaj +1 more source
Coronary microvascular dysfunction (CMD) targeting remains a challenge for precise diagnosis. This work presents a dual‐modal nanoprobe (T‐IR780‐NBs) that combines ultrasound contrast with near‐infrared fluorescence. This technology utilizes proteomics‐derived antibodies that specifically localize to inflamed and injured cardiac tissue, enabling ...
Xiaohui Xu +6 more
wiley +1 more source
We present a strategy to enhance magnetic hyperthermia therapy by modulating nanoparticle–cell interactions. Antibody‐functionalized magnetic nanoparticles targeting the low‐internalizing CCR9 receptor enable spatially controlled membrane anchoring, reducing aggregation and maximizing heat generation under alternating magnetic fields.
David Egea‐Benavente +5 more
wiley +1 more source
A robust zinc‐based metal–organic framework (ZnMOF) enables dual functions of doxorubicin delivery and sustained Zn2+ release to trigger ferroptosis‐enhnaced chemotherapy. DOX@ZnMOF effectively depletes intracellular glutathione, suppresses GPX4, and elevates reactive oxygen species, leading to efficient oxidative DNA damage and apoptosis.
Xin Ma +5 more
wiley +1 more source

