Results 231 to 240 of about 4,607,861 (260)
Some of the next articles are maybe not open access.
Besov‐Morrey spaces and Triebel‐Lizorkin‐Morrey spaces for nondoubling measures
Mathematische Nachrichten, 2009AbstractWe define Morrey type Besov‐Triebel spaces with the underlying measure non‐doubling. After defining the function spaces, we investigate boundedness property of some class of the singular integral operators (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Yoshihiro Sawano, Hitoshi Tanaka
openaire +2 more sources
1991
A locally \(L^ p\) function \(f\) is said to belong to the Morrey space \(L^{p,\lambda}(\mathbb{R}^ n)\) if \[ \| f\|_{p,\lambda}^ p=\sup_{x,\rho}\rho^{ -\lambda}\int_{| x-y|\leq \rho}| f(y)|^ p ...
DI FAZIO, Giuseppe+1 more
openaire +2 more sources
A locally \(L^ p\) function \(f\) is said to belong to the Morrey space \(L^{p,\lambda}(\mathbb{R}^ n)\) if \[ \| f\|_{p,\lambda}^ p=\sup_{x,\rho}\rho^{ -\lambda}\int_{| x-y|\leq \rho}| f(y)|^ p ...
DI FAZIO, Giuseppe+1 more
openaire +2 more sources
A characterization of the Morrey-Campanato spaces
Mathematische Zeitschrift, 2005Let \(\varphi\) be a Schwartz function satisfying the following two conditions: (1) For a fixed \(s\in\mathbb Z^+\), \(\int_{\mathbb R^n}\varphi(x)\,dx=1\) and \(\int_{\mathbb R^n}\varphi(x)x^\theta\,dx=0\) for \(00\) such that \(\hat\Phi(t\xi)\neq0\). For \(t>0\), set \(\varphi_t(x)=t^{-n}\varphi(x/t)\).
Xuan Thinh Duong+3 more
openaire +2 more sources
Generalized Morrey Spaces – Revisited
Zeitschrift für Analysis und ihre Anwendungen, 2017The generalized Morrey space {\mathcal M}_{p,\phi}({\mathbb R}^n) was defined by Mizuhara 1991 and Nakai in 1994. It is equipped with a parameter 0 < p < \infty and a function \phi:{\mathbb R}^n ...
Akbulut, Ali+3 more
openaire +2 more sources
Grand Morrey Spaces and Grand Hardy–Morrey Spaces on Euclidean Space
Journal of Geometric Analysis, 2023K. Ho
semanticscholar +1 more source
Embeddings for Morrey–Lorentz Spaces
Journal of Optimization Theory and Applications, 2012In this paper, new classes of functions are defined. These spaces generalize Lorentz spaces and give a refinement of Lebesgue spaces, weak-Lebesgue spaces, and Morrey spaces. Some embeddings between these new classes are also proved.
openaire +3 more sources
Interpolation of Morrey Spaces
2015Now we turn our attention to interpolation of linear operators on Morrey spaces, say $$\displaystyle{ T: L^{p,\lambda }\longrightarrow L^{q,\mu } }$$ for various p, q, λ, and μ; 1 < p, q < ∞, 0 < λ, μ < n.
openaire +2 more sources
Weighted adams type theorem for the riesz fractional integral in generalized morrey space
, 2016E. Burtseva, N. Samko
semanticscholar +1 more source
Weighted boundedness of some integral operators on weighted λ- central Morrey space
, 2016Xiao Yu, Hui-hui Zhang, Guo-ping Zhao
semanticscholar +1 more source