Results 251 to 260 of about 287,774 (303)
Some of the next articles are maybe not open access.
Essays in Biochemistry, 2000
Myosins constitute a large superfamily of F-actin-based motor proteins found in many organisms from yeast to humans. A phylogenetic comparison of their head sequences has allowed them to be grouped into 15 different classes. Unconventional myosins can be monomeric or dimeric, but are thought not to form filaments, unlike conventional myosin. The double-
G, Kalhammer, M, Bähler
openaire +2 more sources
Myosins constitute a large superfamily of F-actin-based motor proteins found in many organisms from yeast to humans. A phylogenetic comparison of their head sequences has allowed them to be grouped into 15 different classes. Unconventional myosins can be monomeric or dimeric, but are thought not to form filaments, unlike conventional myosin. The double-
G, Kalhammer, M, Bähler
openaire +2 more sources
2020
Myosin XVI (Myo16), a vertebrate-specific motor protein, is a recently discovered member of the myosin superfamily. The detailed functionality regarding myosin XVI requires elucidating or clarification; however, it appears to portray an important role in neural development and in the proper functioning of the nervous system.
Beáta, Bugyi, András, Kengyel
openaire +2 more sources
Myosin XVI (Myo16), a vertebrate-specific motor protein, is a recently discovered member of the myosin superfamily. The detailed functionality regarding myosin XVI requires elucidating or clarification; however, it appears to portray an important role in neural development and in the proper functioning of the nervous system.
Beáta, Bugyi, András, Kengyel
openaire +2 more sources
2020
The birth of widely available genomic databases at the turn of the millennium led to the identification of many previously unknown myosin genes and identification of novel classes of myosin, including MYO19. Further sequence analysis has revealed the unique evolutionary history of class XIX myosins. MYO19 is found in species ranging from vertebrates to
Jennifer L, Bocanegra +2 more
openaire +2 more sources
The birth of widely available genomic databases at the turn of the millennium led to the identification of many previously unknown myosin genes and identification of novel classes of myosin, including MYO19. Further sequence analysis has revealed the unique evolutionary history of class XIX myosins. MYO19 is found in species ranging from vertebrates to
Jennifer L, Bocanegra +2 more
openaire +2 more sources
American Journal of Physiology-Cell Physiology, 1997
The class I myosins are single-headed, actin-binding, mechanochemical “motor” proteins with heavy chains in the molecular mass range of 110-130 kDa; they do not form filaments. Each myosin I heavy chain is associated with one to six light chains that bind to specific motifs known as IQ domains.
openaire +2 more sources
The class I myosins are single-headed, actin-binding, mechanochemical “motor” proteins with heavy chains in the molecular mass range of 110-130 kDa; they do not form filaments. Each myosin I heavy chain is associated with one to six light chains that bind to specific motifs known as IQ domains.
openaire +2 more sources
Regulation of myosin 5a and myosin 7a
Biochemical Society Transactions, 2011The myosin superfamily is diverse in its structure, kinetic mechanisms and cellular function. The enzymatic activities of most myosins are regulated by some means such as Ca2+ ion binding, phosphorylation or binding of other proteins. In the present review, we discuss the structural basis for the regulation of mammalian myosin 5a and Drosophila myosin ...
Verl B, Siththanandan, James R, Sellers
openaire +2 more sources
2012
Myosin X (Myo10), an actin-based molecular motor, induces filopodia formation and controls cell migration in vitro. In the 25 years since Myo10 was first identified, it has been implicated in several different functions in different cell types including phagocytosis in macrophages, axon outgrowth in neurons, cell-cell adhesion in epithelial and ...
openaire +2 more sources
Myosin X (Myo10), an actin-based molecular motor, induces filopodia formation and controls cell migration in vitro. In the 25 years since Myo10 was first identified, it has been implicated in several different functions in different cell types including phagocytosis in macrophages, axon outgrowth in neurons, cell-cell adhesion in epithelial and ...
openaire +2 more sources
Trends in Cell Biology, 1991
The traditional view of myosin, drawn from studies of myosins from striated muscles, is that of an elongated two-headed molecule that assembles into filaments. However, biochemical, molecular genetic and genetic studies have uncovered a host of ubiquitous single-headed nonfilamentous myosins known collectively as myosins I. All of the myosins I possess
openaire +2 more sources
The traditional view of myosin, drawn from studies of myosins from striated muscles, is that of an elongated two-headed molecule that assembles into filaments. However, biochemical, molecular genetic and genetic studies have uncovered a host of ubiquitous single-headed nonfilamentous myosins known collectively as myosins I. All of the myosins I possess
openaire +2 more sources
2007
Myosin II, the myosin which has provided the most biochemical and structural data, is dimeric consisting of a long coiled-coil region with the motor domain flexibly attached to the N-terminal end of the coiled-coil. The motor domain (subfragment 1, S1, or cross-bridge) is obtained by proteolytic cleavage of myosin.
openaire +2 more sources
Myosin II, the myosin which has provided the most biochemical and structural data, is dimeric consisting of a long coiled-coil region with the motor domain flexibly attached to the N-terminal end of the coiled-coil. The motor domain (subfragment 1, S1, or cross-bridge) is obtained by proteolytic cleavage of myosin.
openaire +2 more sources

