Results 241 to 250 of about 448,029 (330)

High‐Performance Electrocatalysts of Potassium Lactate Oxidation for Hydrogen and Solid Potassium Acetate Production

open access: yesAdvanced Materials, Volume 37, Issue 13, April 2, 2025.
Potassium lactate, produced from polylactic acid plastic waste, is oxidized to potassium acetate on an anode using Ni(Co)OOH as the electrocatalyst, while hydrogen is simultaneously generated at the cathode, through a highly efficient industrial‐scale electrolysis system.
Jun Hu   +9 more
wiley   +1 more source

Tunable Enhancement of T Cell Expansion Through Modulation of Stiffness and Adhesion Receptor Engagement in an Engineered Hydrogel Platform

open access: yesAdvanced Materials, EarlyView.
We develop a hydrogel scaffold with controlled substrate stiffness and ligand functionalization for cell culture. Stiff substrates presenting CD3/CD28/CD2 ligands induce 2000‐fold expansion of T cells; this is 68% greater than the clinical standard (Dynabeads) and the first hydrogel capable of large‐scale expansion. Although expanding at a lower yield,
Niroshan Anandasivam   +5 more
wiley   +1 more source

Antibody responses to SARS-CoV-2 variants LP.8.1, LF.7.1, NB.1.8.1, XFG, and BA.3.2 following KP.2 monovalent mRNA vaccination. [PDF]

open access: yesmBio
Abbad A   +17 more
europepmc   +1 more source

Neutralization of waste filter dust with CO[sub]2

open access: green, 2017
Ana Kračun   +3 more
openalex   +1 more source

Kelvin Probe Force Microscopy in Bionanotechnology: Current Advances and Future Perspectives

open access: yesAdvanced Materials, EarlyView.
Kelvin probe force microscopy (KPFM) enables the nanoscale mapping of electrostatic surface potentials. While widely applied in materials science, its use in biological systems remains emerging. This review presents recent advances in KPFM applied to biological samples and provides a critical perspective on current limitations and future directions for
Ehsan Rahimi   +4 more
wiley   +1 more source

A Water‐Soluble PVA Macrothiol Enables Two‐Photon Microfabrication of Cell‐Interactive Hydrogel Structures at 400 mm s−1

open access: yesAdvanced Materials, EarlyView.
A PVA‐based macromolecular thiol‐ene formulation enables efficient two‐photon polymerization at extremely low polymer concentrations and high writing speeds of 400 mm s−1 (20×), allowing high‐fidelity laser writing of cell‐interactive hydrogel structures on demand.
Wanwan Qiu   +6 more
wiley   +1 more source

Home - About - Disclaimer - Privacy