Results 161 to 170 of about 71,254 (255)

Learning from nutrient profile models to inform environmental profile models

open access: yesThe Lancet Planetary Health
Özge, Geyik   +6 more
openaire   +2 more sources

A Bespoke Programmable Interpenetrating Elastomer Network Composite Laryngeal Stent for Expedited Paediatric Laryngotracheal Reconstruction

open access: yesAdvanced Functional Materials, EarlyView.
A programmable interpenetrating double‐network architecture, created via 3D‐TIPS printing and resin infusion, synergistically combines thermoplastic and thermosetting elastomers to balance structural rigidity and surface softness—crucial for paediatric laryngeal stents.
Elizabeth F. Maughan   +14 more
wiley   +1 more source

Light‐Responsive Enzyme‐Loaded Nanoparticles for Tunable Adhesion and Mechanical Wound Contraction

open access: yesAdvanced Functional Materials, EarlyView.
This study presents a photoactivatable enzyme‐loaded mesoporous nanoparticle system (MPDA_PaTy) that enables light‐triggered tunable tissue adhesion and facilitates mechanical wound contraction. Controlled enzymatic crosslinking at tissue or hydrogel interfaces allows on‐demand adhesion.
Junghyeon Ko   +10 more
wiley   +1 more source

A 3D Biofabricated Disease Model Mimicking the Brain Extracellular Matrix Suitable to Characterize Intrinsic Neuronal Network Alterations in the Presence of a Breast Tumor Disseminated to the Brain

open access: yesAdvanced Functional Materials, EarlyView.
A 3D disease model is developed using customized hyaluronic‐acid‐based hydrogels supplemented with extracellular matrix (ECM) proteins resembling brain ECM properties. Neurons, astrocytes, and tumor cells are used to mimic the native brain surrounding.
Esra Türker   +16 more
wiley   +1 more source

Dietary index based on the Food Standards Agency nutrient profiling system and risk of Crohn's disease and ulcerative colitis. [PDF]

open access: yesAliment Pharmacol Ther
Meyer A   +36 more
europepmc   +1 more source

Photonic Engineering Enables All‐Passive Upconversion Imaging with Low‐Intensity Near‐Infrared Light

open access: yesAdvanced Functional Materials, EarlyView.
A passive upconversion imaging system enables the observation of scenes illuminated by low‐intensity incoherent near‐infrared light from 750 to 930 nm, by converting it into the visible without the use of external power. The upconverter is enabled by triplet–triplet annihilation in a bulk heterojunction, with absorption enhanced by plasmonic resonators
Rabeeya Hamid   +13 more
wiley   +1 more source

A Smart Bio‐Battery Facilitates Diabetic Bone Defect Repair Via Inducing Macrophage Reprogramming and Synergistically Modulating Bone Remodeling Coupling

open access: yesAdvanced Functional Materials, EarlyView.
This research presents a novel implantable bio‐battery, GF‐OsG, tailored for diabetic bone repair. GF‐OsG generates microcurrents in high‐glucose conditions to enhance vascularization, shift macrophages to the M2 phenotype, and regulate immune responses.
Nanning Lv   +10 more
wiley   +1 more source

Multifunctional Microstructured Surfaces by Microcontact Printing of Reactive Microgels

open access: yesAdvanced Functional Materials, EarlyView.
Reactive poly(N‐vinylcaprolactam‐co‐glycidyl methacrylate) microgels are used as functional inks to create surface‐grafted arrays on glass via microcontact printing. The patterns (10–50 µm widths and spacings) enable stable binding and post‐functionalization with dyes and peptides.
Inga Litzen   +4 more
wiley   +1 more source

Region‐to‐Region Unidirectional Connection In Vitro Brain Model for Studying Directional Propagation of Neuropathologies

open access: yesAdvanced Functional Materials, EarlyView.
A unidirectional cerebral organoid–organoid neural circuit is established using a microfluidic platform, enabling controlled directional propagation of electrical signals, neuroinflammatory cues, and neurodegenerative disease–related proteins between spatially separated organoids.
Kyeong Seob Hwang   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy