Results 271 to 280 of about 1,373,330 (305)

Residual Stress States in Microstructurally Graded PBF–LB/M Austenitic Steel Components

open access: yesAdvanced Engineering Materials, EarlyView.
This study examines microstructurally graded 316L rectangular tube profiles fabricated via PBF–LB/M using a dual‐laser system. A 1 kW top‐hat and a 400 W Gaussian laser create distinct grain sizes and crystallographic texture. Mechanical properties are linked to microstructural evolution driven by processing conditions.
Nico Möller   +5 more
wiley   +1 more source

Finite Element Modeling of Residual Stress Formation during Nanosecond Laser Ablation of Stainless Steel

open access: yesAdvanced Engineering Materials, EarlyView.
This article investigates residual stress formation during single‐spot nanosecond laser ablation of stainless steel. Experimental validation and a parametric study using finite element simulations are employed to analyze thermal effects, ablation dynamics, and stress evolution.
Yutaka Tsumura   +7 more
wiley   +1 more source

Powder Metallurgy Preparation of Metastable β Ti–Cr–Ge Alloys for Medical Applications

open access: yesAdvanced Engineering Materials, EarlyView.
This study develops metastable β Ti–Cr–Ge alloys using powder metallurgy for biomedical implants. The Ti–10Cr–2Ge alloy exhibits superior mechanical performance with high yield strength (>1100 MPa), low Young's modulus (<85 GPa), and excellent strain hardening behavior.
Teddy Sjafrizal   +3 more
wiley   +1 more source

Optimized Strategy for Fabricating High‐Aspect‐Ratio Periodic Structures Over Large Areas Using ps‐Direct Laser Interference Patterning

open access: yesAdvanced Engineering Materials, EarlyView.
Picosecond direct laser interference patterning (DLIP) enables precise microstructure fabrication on stainless steel. Using a multiscan approach, high‐aspect‐ratio patterns are achieved. Fluence influences structure growth and homogeneity, with smaller periods yielding better uniformity.
Fabian Ränke   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy