Results 121 to 130 of about 90,157 (275)

Discrete localized modes supported by an inhomogeneous defocusing nonlinearity

open access: yes, 2013
We report that infinite and semi-infinite lattices with spatially inhomogeneous self-defocusing (SDF)\ onsite nonlinearity, whose strength increases rapidly enough toward the lattice periphery, support stable unstaggered (UnST) discrete bright solitons ...
Gligoric, Goran   +3 more
core   +1 more source

Emergence of Light‐Transforming Layered Hybrid Halide Perovskites

open access: yesAdvanced Functional Materials, EarlyView.
The emerging class of light‐transforming layered halide perovskite materials is reviewed, outlining challenges for their development and perspectives toward application in the future. Abstract Layered hybrid halide perovskites (LHPs) have attracted considerable attention in optoelectronics.
Ghewa AlSabeh, Jovana V. Milić
wiley   +1 more source

Probing correlated phases of bosons in optical lattices via trap squeezing

open access: yes, 2008
We theoretically analyze the response properties of ultracold bosons in optical lattices to the static variation of the trapping potential. We show that, upon an increase of such potential (trap squeezing), the density variations in a central region ...
Pethick C J   +3 more
core   +1 more source

DENTA: A Dual Enzymatic Nanoagent for Self‐Activating Tooth Whitening and Biofilm Disruption

open access: yesAdvanced Functional Materials, EarlyView.
The nanoapatite with dual enzymes (DENTA) accumulates in dentinal tubules, reducing hypersensitivity caused by dental nerve exposure and facilitating continuous ROS generation through salivary glucose for effective, long‐term whitening. The dentin structures remain non‐destructive due to the low concentration of ROS, demonstrating excellent cell ...
Junseok Kim   +13 more
wiley   +1 more source

Hybrid transversal-lattice optical filters

open access: yesOptics Express, 2002
We introduce a new general class of hybrid optical filters, which reduce to either transversal or lattice filters in particular limits, and are suitable for implementation as planar lightwave circuits. They can be used to synthesize arbitrary periodic transfer functions with finite impulse responses.
openaire   +2 more sources

Large Anomalous and Topological Hall Effect and Nernst Effect in a Dirac Kagome Magnet Fe3Ge

open access: yesAdvanced Functional Materials, EarlyView.
Fe3Ge, a Kagome‐lattice magnet, exhibits remarkable anomalous Hall and Nernst effects, with transverse thermoelectric conductivity surpassing or comaprable to some well‐known ferromagnets. First‐principles calculations attribute these to Berry curvature from massive Dirac gaps. Additionally, topological Hall and Nernst signals emerge from field‐induced
Chunqiang Xu   +11 more
wiley   +1 more source

Slowdown of thermalization and the emergence of prethermal dynamics in disordered optical lattices

open access: yesPhysical Review Research
By utilizing the theoretical tools of optical thermodynamics, we investigate thermalization in nonlinear disordered lattices beyond the diffusion regime. Even under extreme levels of disorder, we analytically predict the expected thermal value of entropy
Georgios G. Pyrialakos   +8 more
doaj   +1 more source

Robust band of critical states in time-reversal symmetry-broken fermionic systems with lattice selective disorder

open access: yesPhysical Review Research, 2019
We analyze the localization properties of two-dimensional systems based on partite lattices with a basis. Contrary to standard results, we find that a band of critical states emerges for systems in the unitary class A preserving spin symmetry when ...
Eduardo V. Castro   +3 more
doaj   +1 more source

Understanding Decoherence of the Boron Vacancy Center in Hexagonal Boron Nitride

open access: yesAdvanced Functional Materials, EarlyView.
State‐of‐the‐art computations unravel the intricate decoherence dynamics of the boron vacancy center in hexagonal boron nitride across magnetic fields from 0 to 3 T. Five distinct regimes emerge, dominated by nuclear spin interactions, revealing optimal coherence times of 1–20 µs in the 180–350 mT range for isotopically pure samples.
András Tárkányi, Viktor Ivády
wiley   +1 more source

Clean‐Limit 2D Superconductivity in a Thick Exfoliated Kagome Film

open access: yesAdvanced Functional Materials, EarlyView.
This study reports clean‐limit 2D superconductivity in a thick kagome system, analogous to the 3D case. It observes a drop in superfluid stiffness near the superconducting transition and a cusp‐like feature in the angular dependence of the upper critical field.
Fei Sun   +3 more
wiley   +1 more source

Home - About - Disclaimer - Privacy