Results 161 to 170 of about 210,118 (389)

Two-Dimensional Black Phosphorus and Graphene Oxide Nanosheets Synergistically Enhance Cell Proliferation and Osteogenesis on 3D Printed Scaffolds.

open access: yesACS Applied Materials and Interfaces, 2019
Two-dimensional (2D) materials have emerged as a new promising research topic for tissue engineering because of their ability to alter the surface properties of tissue scaffolds and thus improve their biocompatibility and cell affinity.
Xifeng Liu   +7 more
semanticscholar   +1 more source

ROS Activated NETosis of Bone Marrow CD55+ Intermediate Mature Neutrophils Through HIF1α‐PADI4 Pathway to Initiate Bone Aging

open access: yesAdvanced Science, EarlyView.
In this study, we find CD55+ neutrophils show activated NETosis within bone marrow, induce BMSC senescence and osteogenesis inhibition, finally leading to bone aging initiation. Mechanistically, ROS synergizes with the CD55‐driven HIF1α‐PADI4 pathway to promote NETosis.
Yutong Guo   +6 more
wiley   +1 more source

Tendon Organoids Enable Functional Tendon Rejuvenation Through ALKBH5‐Dependent RNA Demethylation

open access: yesAdvanced Science, EarlyView.
FT organoids reverse the aged phenotype of tendon cells, reinstating a fetal‐like state. This breakthrough establishes a potent cell source for tendon tissue engineering, effectively advancing regenerative medicine. ABSTRACT Adult tendon injuries pose a major clinical challenge due to limited self‐repair capacity, resulting in suboptimal regeneration ...
Tian Qin   +14 more
wiley   +1 more source

Hyperviscous Diabetic Bone Marrow Niche Impairs BMSCs Osteogenesis via TRPV2‐Mediated Cytoskeletal‐Nuclear Mechanotransduction

open access: yesAdvanced Science, EarlyView.
Diabetic bone marrow exhibits pathological ECM hyperviscosity that activates TRPV2‐mediated Ca2⁺ influx, leading to perinuclear F‐actin disassembly, nuclear deformation, and chromatin condensation. This cytoskeletal‐nuclear decoupling suppresses osteogenic differentiation of BMSCs.
Yao Wen   +8 more
wiley   +1 more source

DEL‐1 is an Endogenous Senolytic Protein that Inhibits Senescence‐Associated Bone Loss

open access: yesAdvanced Science, EarlyView.
Senescent bone marrow stromal cells accumulate in the aging bone microenvironment, promoting bone degeneration. DEL‐1, an endogenous secreted protein, acts as a natural senolytic that selectively eliminates these cells. By engaging a β3 integrin/CD73/adenosine/p38 MAPK/BCL‐2 pathway, DEL‐1 counters aging‐related bone loss, revealing promising ...
Jong‐Hyung Lim   +11 more
wiley   +1 more source

Bioprinting of Microtissues Within Mechanically Tunable Support Baths to Engineer Anisotropic Musculoskeletal Tissues

open access: yesAdvanced Science, EarlyView.
This study presents a novel 4D bioprinting platform for engineering biomimetic musculoskeletal grafts. By tuning the mechanical properties of support baths, we enhance tissue fusion, collagen alignment, and cell differentiation. Using this strategy, we successfully fabricate scaled‐up, anisotropic tissues such as meniscus, articular cartilage, and ...
Francesca D. Spagnuolo   +2 more
wiley   +1 more source

The Osteoblastic Microenvironment Determines the Fate of Breast Cancer Cells Disseminated in the Bone Marrow

open access: yesAdvanced Science, EarlyView.
This study revealed how the osteoblastic microenvironment determines the fate of cancer cells disseminated in bone, with a focus on whether they colonize, reside in quiescence, or reactivate from dormancy. Targeting integrin signaling may offer promising strategies for preventing quiescent cancer cells reactivation and bone colonization.
Hong‐Li Wang   +7 more
wiley   +1 more source

Engineering Osteoimmune Responses with Functionalized Orthopedic Implants for Post‐Operative Osteosarcoma Treatment

open access: yesAdvanced Science, EarlyView.
Osteosarcoma is the most common primary bone tumor with limited treatment options and a terrible prognosis. This review provides a comprehensive summary of the recent development of osteoimmunomodulatory implants for post‐operative osteosarcoma treatment, of which the potential utility in evoking durable anti‐osteosarcoma immunity and accelerating bone
Yilong Dong   +6 more
wiley   +1 more source

Immunomodulatory Hydrogel Coating with SeNPs and Lithium Silicate Synergistically Promotes Osseointegration and Prevents Infection on Titanium Implants

open access: yesAdvanced Science, EarlyView.
This study introduces a multifunctional hydrogel coating (Lap‐CMCSMA/GelMA@SeNPs) that scavenges ROS, modulates immune responses, and shows strong antibacterial activity. It effectively restores the peri‐implant microenvironment. The coating exhibits excellent biocompatibility and promotes osteogenic differentiation.
Su Jiang   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy