Results 161 to 170 of about 210,118 (389)
Two-dimensional (2D) materials have emerged as a new promising research topic for tissue engineering because of their ability to alter the surface properties of tissue scaffolds and thus improve their biocompatibility and cell affinity.
Xifeng Liu +7 more
semanticscholar +1 more source
In this study, we find CD55+ neutrophils show activated NETosis within bone marrow, induce BMSC senescence and osteogenesis inhibition, finally leading to bone aging initiation. Mechanistically, ROS synergizes with the CD55‐driven HIF1α‐PADI4 pathway to promote NETosis.
Yutong Guo +6 more
wiley +1 more source
Tendon Organoids Enable Functional Tendon Rejuvenation Through ALKBH5‐Dependent RNA Demethylation
FT organoids reverse the aged phenotype of tendon cells, reinstating a fetal‐like state. This breakthrough establishes a potent cell source for tendon tissue engineering, effectively advancing regenerative medicine. ABSTRACT Adult tendon injuries pose a major clinical challenge due to limited self‐repair capacity, resulting in suboptimal regeneration ...
Tian Qin +14 more
wiley +1 more source
Diabetic bone marrow exhibits pathological ECM hyperviscosity that activates TRPV2‐mediated Ca2⁺ influx, leading to perinuclear F‐actin disassembly, nuclear deformation, and chromatin condensation. This cytoskeletal‐nuclear decoupling suppresses osteogenic differentiation of BMSCs.
Yao Wen +8 more
wiley +1 more source
DEL‐1 is an Endogenous Senolytic Protein that Inhibits Senescence‐Associated Bone Loss
Senescent bone marrow stromal cells accumulate in the aging bone microenvironment, promoting bone degeneration. DEL‐1, an endogenous secreted protein, acts as a natural senolytic that selectively eliminates these cells. By engaging a β3 integrin/CD73/adenosine/p38 MAPK/BCL‐2 pathway, DEL‐1 counters aging‐related bone loss, revealing promising ...
Jong‐Hyung Lim +11 more
wiley +1 more source
This study presents a novel 4D bioprinting platform for engineering biomimetic musculoskeletal grafts. By tuning the mechanical properties of support baths, we enhance tissue fusion, collagen alignment, and cell differentiation. Using this strategy, we successfully fabricate scaled‐up, anisotropic tissues such as meniscus, articular cartilage, and ...
Francesca D. Spagnuolo +2 more
wiley +1 more source
This study revealed how the osteoblastic microenvironment determines the fate of cancer cells disseminated in bone, with a focus on whether they colonize, reside in quiescence, or reactivate from dormancy. Targeting integrin signaling may offer promising strategies for preventing quiescent cancer cells reactivation and bone colonization.
Hong‐Li Wang +7 more
wiley +1 more source
Osteosarcoma is the most common primary bone tumor with limited treatment options and a terrible prognosis. This review provides a comprehensive summary of the recent development of osteoimmunomodulatory implants for post‐operative osteosarcoma treatment, of which the potential utility in evoking durable anti‐osteosarcoma immunity and accelerating bone
Yilong Dong +6 more
wiley +1 more source
This study introduces a multifunctional hydrogel coating (Lap‐CMCSMA/GelMA@SeNPs) that scavenges ROS, modulates immune responses, and shows strong antibacterial activity. It effectively restores the peri‐implant microenvironment. The coating exhibits excellent biocompatibility and promotes osteogenic differentiation.
Su Jiang +7 more
wiley +1 more source
Improved Human Bone Marrow Mesenchymal Stem Cell Osteogenesis in 3D Bioprinted Tissue Scaffolds with Low Intensity Pulsed Ultrasound Stimulation [PDF]
Xuan Zhou +6 more
openalex +1 more source

