Results 271 to 280 of about 557,753 (336)
Wedelolactone (WED), a natural TLR2 agonist, promotes neutrophil differentiation and enhances bactericidal function, offering a potential therapeutic strategy for neutropenia. Using a multi‐omics approach, this study reveals that WED activates the TLR2/MEK/ERK pathway, upregulating key transcription factors (PU.1, CEBPβ) to drive neutrophil development.
Long Wang +16 more
wiley +1 more source
Oxidative phosphorylation is required for cardiomyocyte re-differentiation and long-term fish heart regeneration. [PDF]
Lekkos K +24 more
europepmc +1 more source
Seasonal cold adaptation is vital for insect survival, yet the molecular mechanisms linking diapause to mitochondrial resilience remain largely unresolved. We identify ascaroside C9 (asc‐C9) as a key endocrine signal that enhances diapause survival during cold stress by activating the AKHR–PGC1α–UCP4 axis, thereby driving cold‐induced lipolysis and ...
Jiao Zhou +14 more
wiley +1 more source
A crucial role of KLF2-regulated mitochondrial oxidative phosphorylation in maintaining the stemness of mesenchymal stem cells derived from bone marrow. [PDF]
Gong Z +7 more
europepmc +1 more source
This research deciphers the m6A transcriptome by profiling its sites and functional readout effects: from mRNA stability, translation to alternative splicing, across five different cell types. Machine learning model identifies novel m6A‐binding proteins DDX6 and FXR2 and novel m6A reader proteins FUBP3 and L1TD1.
Zhou Huang +11 more
wiley +1 more source
Seminal plasma exosomes improve the motility and mitochondrial function of goat spermatozoa during liquid storage by regulating oxidative phosphorylation. [PDF]
Liu T +5 more
europepmc +1 more source
This study shows that lower NAM levels in PE‐derived pEVs correlate with disease severity. NAM‐deficient pEVs reduce Th1 and Th17 inhibition, leading to PE‐like symptoms. NAM in pEVs inhibits Th1 via SIRT1 and Th17 via macrophages. Reduced NAM in PE‐EVs is due to decreased HRS expression in trophoblasts, resulting from elevated HSP27.
Haiyi Fei +10 more
wiley +1 more source

