Results 281 to 290 of about 171,305 (316)
Some of the next articles are maybe not open access.

Voltage-gated potassium channel antibodies

Neurology, 2016
A radioimmunoassay (RIA) to detect antibodies against what was initially believed to be voltage-gated potassium channels (VGKC) in patients with neuromyotonia was established 20 years ago.1 The rationale for this test came from previous RIA assays that detected antibodies against acetylcholine receptors or voltage-gated calcium channels in which the ...
Francesc, Graus, Mark P, Gorman
openaire   +2 more sources

Voltage-gated Potassium Channel Inhibitors

Current Pharmaceutical Design, 1996
Forty years have transpired since tetraethylammonium was first used to selectively inhibit the potassiuin conductance in squid axons. Since then, a large body of work has emerged describing inhibitors of voltage-gated potassium currents in a variety of cells.
W. F. Hopkins   +2 more
openaire   +1 more source

Mechanism of Voltage Gating in Potassium Channels

Science, 2012
Open and Shut Case Voltage-sensing domains (VSDs) control the activity of voltage-gated ion channels to regulate the ion flow that underlies nerve conduction. Structural and biophysical studies have provided insight into voltage gating; however, understanding has been hindered by the lack of a crystal structure of a fully closed ...
Morten Ø, Jensen   +5 more
openaire   +2 more sources

Enzymatic activation of voltage-gated potassium channels

Nature, 2006
Voltage-gated ion channels in excitable nerve, muscle, and endocrine cells generate electric signals in the form of action potentials. However, they are also present in non-excitable eukaryotic cells and prokaryotes, which raises the question of whether voltage-gated channels might be activated by means other than changing the voltage difference ...
Yajamana, Ramu, Yanping, Xu, Zhe, Lu
openaire   +2 more sources

Neuronal trafficking of voltage-gated potassium channels

Molecular and Cellular Neuroscience, 2011
The computational ability of CNS neurons depends critically on the specific localization of ion channels in the somatodendritic and axonal membranes. Neuronal dendrites receive synaptic inputs at numerous spines and integrate them in time and space. The integration of synaptic potentials is regulated by voltage-gated potassium (Kv) channels, such as ...
Jensen, Camilla S   +2 more
openaire   +3 more sources

Voltage-Gated Potassium Channels in Cell Proliferation

Physiology, 2004
It is commonly accepted that cells require K+channels to proliferate. The role(s) of K+channels in the process is, however, poorly understood. Cloning of K+channel genes opened the possibility to approach this problem in a way more independent from pharmacological tools.
openaire   +3 more sources

Voltage-Gated Potassium Channels: Regulation by Accessory Subunits

The Neuroscientist, 2006
Voltage-gated potassium channels regulate cell membrane potential and excitability in neurons and other cell types. A precise control of neuronal action potential patterns underlies the basic functioning of the central and peripheral nervous system. This control relies on the adaptability of potassium channel activities.
Yan Li, S. Um, T. McDonald
semanticscholar   +3 more sources

Voltage-gated potassium channels in human ductus arteriosus

The Lancet, 2000
We studied tone in the human ductus arteriosus and show that the constriction to oxygen is due to inhibition of voltage-gated potassium channels and, in the acute phase, is independent of endothelin-1.
E, Michelakis   +5 more
openaire   +2 more sources

Animal Toxins Acting on Voltage-Gated Potassium Channels

Current Pharmaceutical Design, 2008
Animal venoms are rich natural sources of bioactive compounds, including peptide toxins acting on the various types of ion channels, i.e. K(+), Na(+), Cl(-) and Ca(2+). Among K+ channel-acting toxins, those selective for voltage-gated K(+) (Kv) channels are widely represented and have been isolated from the venoms of numerous animal species, such as ...
Stéphanie, Mouhat   +3 more
openaire   +2 more sources

Clinical spectrum of voltage-gated potassium channel autoimmunity

Neurology, 2008
To document neurologic, oncologic, and serologic associations of patients in whom voltage-gated potassium channel (VGKC) autoantibodies were detected in the course of serologic evaluation for neuronal, glial, and muscle autoantibodies.Indirect immunofluorescence screening of sera from 130,000 patients performed on a service basis for markers of ...
K M, Tan   +4 more
openaire   +2 more sources

Home - About - Disclaimer - Privacy