Results 241 to 250 of about 3,840,867 (319)

Knockout of the mitoribosome rescue factors Ict1 or Mtrfr is viable in zebrafish but not mice: compensatory mechanisms underlying each factor's loss

open access: yesFEBS Open Bio, EarlyView.
Mitochondria contain two mitoribosome rescue factors, ICT1 and MTRFR (C12orf65). ICT1 also functions as a mitoribosomal protein in mice and humans, and its loss is lethal. Although Mtrfr knockout mice could not be generated, knockout zebrafish lines for ict1 and mtrfr were established.
Nobukazu Nameki   +11 more
wiley   +1 more source

GDP‐fucose transporter SLC35C1: a potential regulatory role in cytosolic GDP‐fucose and fucosylated glycan synthesis

open access: yesFEBS Open Bio, EarlyView.
The inactivation of SLC35C1 (GDP‐fucose transporter) and enzymes involved in GDP‐fucose biosynthesis was studied. Fucose supplementation increases the level of GDP‐fucose to abnormal, millimolar values in the absence of the TSTA3 protein and SLC35C1 in contrast to the GMDS/SLC35C1 double mutant.
Edyta Skurska, Mariusz Olczak
wiley   +1 more source

Short peptide perturbs spermatogenesis via immune microenvironment dysregulation and mitochondrial imbalance

open access: yesFEBS Open Bio, EarlyView.
In the blood–testis barrier, occludin is crucial for tight junctions. This study demonstrates that occludin‐targeting short peptides disrupt junction integrity, inducing immune cell infiltration, tumor necrosis factor‐α/interleukin‐6 secretion and mitochondrial dysfunction, ultimately triggering apoptosis.
Heng Wang, Xiaofang Tan, Deyu Chen
wiley   +1 more source

The structure of the RNA binding site of ribosomal proteins S8 and S15.

open access: hybrid, 1979
Rachel Müller   +2 more
openalex   +1 more source

Construction of hyperthermostable d‐allulose 3‐epimerase from Arthrobacter globiformis M30 using the sequence information from Arthrobacter psychrolactophilus

open access: yesFEBS Open Bio, EarlyView.
d‐Allulose can be produced from d‐fructose by d‐allulose 3‐epimerase. Based on sequence homology information, we successfully engineered thermostable mutants with the protein engineering method. By integrating positive mutations, we constructed an enzyme that exhibits hyperthermostability without a loss in the activity.
Kensaku Shimada   +3 more
wiley   +1 more source

Home - About - Disclaimer - Privacy