Results 181 to 190 of about 2,254,706 (376)

Phagocyte proteinases in multiple trauma and sepsis [PDF]

open access: yes, 1993
Fritz, Hans   +4 more
core   +1 more source

Heterologous Expression and Purification of \u3cem\u3eVibrio proteolyticus (Aeromonas proteolytica)\u3c/em\u3e Aminopeptidase: A Rapid Protocol [PDF]

open access: yes, 2009
Metalloaminopeptidases (mAPs) are enzymes that are involved in HIV infectivity, tumor growth and metastasis, angiogenesis, and bacterial infection. Investigation of structure–function relationships in mAPs is a prerequisite to rational design of anti-mAP
Bennett, Brian, Hartley, Mariam
core   +1 more source

Multiomics Analyses Reveal an Essential Role of Tryptophan in Treatment of csDMARDs in Rheumatoid Arthritis

open access: yesAdvanced Science, EarlyView.
Rheumatoid arthritis is a disease characterized by joint inflammation. Approximately 50% of patients show insufficient response to traditional synthetic disease‐modifying antirheumatic drugs. This study aims to elucidate differential molecular profiles of the mechanisms underlying drug responses through multi‐omics strategy.
Congcong Jian   +26 more
wiley   +1 more source

Cleavage of HMGB1 by Proteolytic Enzymes Associated with Inflammatory Conditions. [PDF]

open access: yesFront Immunol, 2020
Sowinska A   +5 more
europepmc   +1 more source

Actin proteolysis during ripening of dry fermented sausages at different pH values [PDF]

open access: yes, 2017
Berardo, Alberto   +6 more
core   +1 more source

Emodin Alleviates Sepsis‐Induced Multiorgan Damage by Inhibiting NETosis through Targeting Neutrophils BCL‐10

open access: yesAdvanced Science, EarlyView.
Emodin targets BCL‐10 to modulate the BCL‐10/MALT1 complex, thereby suppressing NF‐κB activation and significantly exerting multiorgan protective effects in sepsis. Abstract Sepsis is a life‐threatening condition caused by dysregulated host responses to infection, characterized by excessive inflammation and abnormal coagulation.
Xiaolong Xu   +16 more
wiley   +1 more source

Skullcapflavone II Inhibits SLC1A4‐Mediated L‐Serine Uptake and Promotes Mitochondrial Damage in Gastric Cancer

open access: yesAdvanced Science, EarlyView.
Skullcapflavone II (SkII) significantly alters serine metabolism in gastric cancer cells by directly targeting the L‐serine transporter SLC1A4, thereby inhibiting L‐serine uptake rather than de novo synthesis. This disruption of serine metabolism by SkII leads to increased oxidative stress and consequent mitochondrial damage.
Jing Zhao   +10 more
wiley   +1 more source

Home - About - Disclaimer - Privacy