Results 141 to 150 of about 259,803 (278)
This review explores recent advances in digital micromirror device (DMD)‐based lithography, focusing on its programmable light modulation, multi‐material compatibility, and dimensional patterning strategies. It highlights innovations from optical system design to materials integration and multifunctional applications, positioning DMD lithography as a ...
Yubin Lee +5 more
wiley +1 more source
Printed 2.5D‐Microstructures with Material‐Specific Functionalization for Tunable Biosensing
The 2.5D‐MiSENSE platform integrates a microstructured biosensor with an in‐line milking pipeline to enable real‐time detection of mastitis biomarkers during active milk flow. The system uses a 2.5D microengineered surface and patterned electrodes to enhance milk–sensor interaction.
Matin Ataei Kachouei +2 more
wiley +1 more source
In this Perspective, we highlight the processing science and scale‐up capabilities of the Materials Engineering Research Facility (MERF) at the U.S. Department of Energy's Argonne National Laboratory, with an emphasis on practical solutions for sustainable water and critical resource recovery. We demonstrate how national laboratories bridge fundamental
Yuepeng Zhang +9 more
wiley +1 more source
This review explores advances in wearable and lab‐on‐chip technologies for breast cancer detection. Covering tactile, thermal, ultrasound, microwave, electrical impedance tomography, electrochemical, microelectromechanical, and optical systems, it highlights innovations in flexible electronics, nanomaterials, and machine learning.
Neshika Wijewardhane +4 more
wiley +1 more source
A Multi‐Resonant Tunable Fabry‐Pérot Cavity for High Throughput Spectral Imaging
This study introduces a multi‐resonant tunable Fabry‐Pérot filter for high throughput spectral imaging. With a spectral resolution of 10 nm and a switching time of 23 ms, this compact and low‐cost device possesses better spectral imaging accuracy in poor light conditions while maintaining over six times higher optical throughput than standard liquid ...
Xiao Wu +5 more
wiley +1 more source
Preparing ground and excited states using adiabatic CoVaR
CoVariance Root finding with classical shadows (CoVaR) was recently introduced as a new paradigm for training variational quantum circuits. Common approaches, such as variants of the variational quantum eigensolver, aim to optimise a non-linear classical
Wooseop Hwang, Bálint Koczor
doaj +1 more source
This article surveys the state of the art in quantum computer algorithms, including both black-box and non-black-box results. It is infeasible to detail all the known quantum algorithms, so a representative sample is given. This includes a summary of the early quantum algorithms, a description of the Abelian Hidden Subgroup algorithms (including Shor's
openaire +2 more sources
Intramolecular bridge‐locking frustrates detrimental anti‐parallel packing in evaporated organic films. This design enhances net polar orientation, leading to a twofold off‐resonance increase in the second‐order nonlinear susceptibility (χ(2)) without electric‐field poling.
Pierre‐Luc Thériault +6 more
wiley +1 more source
Improved Disorder Resilience in Small‐Footprint Photonic Cavities with Periodicity Breaking
Compact photonic crystal cavities with engineered aperiodicity are demonstrated to sustain high quality factormodes and enhanced reproducibility within a minimal footprint. Combining numerical optimization and near‐field measurements, the study reveals how controlled periodicity breaking improves disorder resilience, offering a robust and scalable ...
Nicoletta Granchi +7 more
wiley +1 more source
Ultra‐Durable Information‐Encoded Anti‐Counterfeiting Self‐Assembled Nanocrystal Labels
Ultra‐durable cost‐effective information‐encoded anti‐counterfeiting labels are fabricated to secure semiconductor chips. A novel method is used to self‐assemble colloidal quantum wells (CQWs) into color bars. Information can be encoded spatially, spectrally, and opto‐spatially.
Taha Haddadifam +6 more
wiley +1 more source

