Results 51 to 60 of about 1,366 (195)
This study presents a novel “in vivo–in vitro” therapeutic strategy for spinal cord injury by leveraging magnetically responsive piezoelectric nanomaterials. These nanomaterials enable targeted delivery of localized electrical stimulation at the injury site through noninvasive external magnetic actuation, thereby promoting axonal regeneration and ...
Zhihang Xiao +9 more
wiley +1 more source
The global need for lithium (Li) is increasing due to its use in batteries which are used to make electric vehicles, wind turbines and fuel cells to facilitate the world’s ‘green transition’ to low carbon economies.
Karen A. Hudson-Edwards
doaj +1 more source
This study combines full‐field tomography with diffraction mapping to quantify radial (ε002$\varepsilon _{002}$) and axial (ε100$\varepsilon _{100}$) lattice strain in wrinkled carbon‐fiber specimens for the first time. Radial microstrain gradients (−14.5 µεMPa$\varepsilon \mathrm{MPa}$−1) are found to signal damage‐prone zones ahead of failure, which ...
Hoang Minh Luong +7 more
wiley +1 more source
The Vali–Janlou kaolin deposit is located in the northern part of the Urmia–Dokhtar magmatic belt, central-northern Iran, and is hosted by middle Eocene rhyodacitic volcanic rocks.
Ali Abedini +2 more
doaj +1 more source
Multimodal Layer‐Crossing Interrogation of Brain Circuits Enabled by Microfluidic Axialtrodes
The study introduces a flexible microfluidic axialtrode that integrates optical, electrical, and chemical modalities within a single polymer fiber. By redistributing electrodes and fluidic channels along the fiber axis via angled cleaving, it enables simultaneous optogenetic stimulation, electrophysiological recording, and drug delivery across brain ...
Kunyang Sui +8 more
wiley +1 more source
Programming Next‐Generation Synthetic Biosensors by Genetic Circuit Design
Synthetic biology enables genetic circuit‐based biosensing to detect diverse targets, process signals, and transduce them into readable outputs or intracellular regulatory activities. However, field deployment and real‐world application of such synthetic biosensors face considerable challenges in sensitivity, specificity, speed, stability, and ...
Yuanli Gao +4 more
wiley +1 more source
Polymorphic Superparaelectric Engineering Boosting Energy Storage Capacity in BaTiO3‐Based Ceramics
Herein, Ca2+ incorporation promotes the coexistence of CaTiO3‐/BaTiO3‐derived paraferroelectric states, stabilizing cubic‐orthorhombic‐tetragonal polymorphic superparaelectric phases. This minimizes polarization energy barriers, facilitating full polarization saturation without compromising efficiency.
Pan Liu +9 more
wiley +1 more source
High‐Throughput Screening and Characterization of Non‐Flammable Na‐Cl Solid Electrolytes
A Na‐Cl solid electrolyte with high ionic conductivity is screened from a structural database using force‐field molecular dynamics (MD) simulations and density functional theory (DFT)‐MD calculations. Na3La5Cl18 is identified, synthesized, and characterized.
Naoto Tanibata +6 more
wiley +1 more source
Toward Complete CO2 Electroconversion: Status, Challenges, and Perspectives
Electrocatalytic CO2 reduction and CO2 batteries face challenges in achieving complete CO2 conversion with high conversion rates and Faradaic efficiency simultaneously. Existing systems compromise one for the other with incomplete CO2 conversion and inefficiencies, hindering practical applications. This perspective highlights state‐of‐the‐art progress,
Changfan Xu +5 more
wiley +1 more source
Machine learning predicts activation energies for key steps in the water‐gas shift reaction on 92 MXenes. Random Forest is identified as the most accurate model. Reaction energy and reactant LogP emerge as key descriptors. The approach provides a predictive framework for catalyst design, grounded in density functional theory data and validated through ...
Kais Iben Nassar +3 more
wiley +1 more source

