Results 211 to 220 of about 1,208,652 (313)
Methods to improve antibody–drug conjugate (ADC) treatment durability in cancer therapy are needed. We utilized ADCs and immune‐stimulating antibody conjugates (ISACs), which are made from two non‐competitive antibodies, to enhance the entry of toxic payloads into cancer cells and deliver immunostimulatory agents into immune cells.
Tiexin Wang +3 more
wiley +1 more source
Etoposide induces DNA damage, activating p53‐dependent apoptosis via caspase‐3/7, which cleaves PARP1. Dammarenediol II enhances this apoptotic pathway by suppressing O‐GlcNAc transferase activity, further decreasing O‐GlcNAcylation. The reduction in O‐GlcNAc levels boosts p53‐driven apoptosis and influences the Akt/GSK3β/mTOR signaling pathway ...
Jaehoon Lee +8 more
wiley +1 more source
Mast Cells in the Solid Tumor Microenvironment: Multiple Roles and Targeted Therapeutic Potential. [PDF]
Lu C +6 more
europepmc +1 more source
Tumor mutational burden as a determinant of metastatic dissemination patterns
This study performed a comprehensive analysis of genomic data to elucidate whether metastasis in certain organs share genetic characteristics regardless of cancer type. No robust mutational patterns were identified across different metastatic locations and cancer types.
Eduardo Candeal +4 more
wiley +1 more source
A Holistic Review of Oncological Drug Targets and Trajectories of Resistance in Cancer Therapy. [PDF]
Kaur H, Rana D, Bag S, Singh P.
europepmc +1 more source
Aptamers are used both therapeutically and as targeting agents in cancer treatment. We developed an aptamer‐targeted PLGA–TRAIL nanosystem that exhibited superior therapeutic efficacy in NOD/SCID breast cancer models. This nanosystem represents a novel biotechnological drug candidate for suppressing resistance development in breast cancer.
Gulen Melike Demirbolat +8 more
wiley +1 more source
Signaling pathways in systemic lupus erythematosus and therapeutic implications. [PDF]
Balogh L, Kovács VG, Nagy G, Németh T.
europepmc +1 more source
Targeting p38α in cancer: challenges, opportunities, and emerging strategies
p38α normally regulates cellular stress responses and homeostasis and suppresses malignant transformation. In cancer, however, p38α is co‐opted to drive context‐dependent proliferation and dissemination. p38α also supports key functions in cells of the tumor microenvironment, including fibroblasts, myeloid cells, and T lymphocytes.
Angel R. Nebreda
wiley +1 more source

