Results 241 to 250 of about 284,360 (314)

Gut Metabolite Indole‐3‐Propionic Acid Regulates Macrophage Autophagy Through PPT1 Inhibiting Aging‐Related Myocardial Fibrosis

open access: yesAdvanced Science, EarlyView.
IPA is an intestinal tryptophan metabolite whose effects decline with decreased heart function. Supplementing IPA can alleviate the aging‐related myocardial fibrosis through PPT1. PPT1 is a key protein localized to lysosomes, and IPA can restore macrophage autophagy function by regulating PPT1 expresssions, thereby reducing aging‐related myocardial ...
Jing Lu   +16 more
wiley   +1 more source

FABP4 as a Mediator of Lipid Metabolism and Pregnant Uterine Dysfunction in Obesity

open access: yesAdvanced Science, EarlyView.
Obesity during late pregnancy contributes to uterine smooth muscle dysfunction, but the underlying mechanisms are unclear. This study identifies fatty acid binding protein 4 (FABP4) as a key player in the process, mediating excessive fatty acid uptake, lipid accumulation, and mitochondrial dysfunction in myometrial cells. FABP4 could be a novel uterine
Xuan Li   +11 more
wiley   +1 more source

MAGEA6 Engages a YY1‐Dependent Transcription to Dictate Perineural Invasion in Colorectal Cancer

open access: yesAdvanced Science, EarlyView.
This study investigates the role of MAGEA6 in perineural invasion (PNI) in colorectal cancer (CRC). MAGEA6 promotes CRC invasiveness by inhibiting YY1 ubiquitination, enhancing CXCL1 secretion, and recruiting Schwann cells. These findings highlight the potential of targeting the MAGEA6/YY1/CXCL1 axis for therapeutic strategies against PNI and tumor ...
Hao Wang   +9 more
wiley   +1 more source

SARS-CoV-2-Derived RNA Fragment Induces Myocardial Dysfunction via siRNA-like Suppression of Mitochondrial ATP Synthase. [PDF]

open access: yesInt J Mol Sci
Nukaga S   +15 more
europepmc   +1 more source

Generation of Neural Organoids and Their Application in Disease Modeling and Regenerative Medicine

open access: yesAdvanced Science, EarlyView.
Neural organoids provide a versatile platform for neurological research. Advances in organoid technology have partially achieved human neural tissue complexity in terms of tissue structure, cell diversity, and neural signaling, offering insights into neural disorders and regenerative strategies. Technology advances from biomaterials, bio‐manufacturing,
Ruiqi Huang   +4 more
wiley   +1 more source

The Mechanosensitive PIEZO1 Channel Contributes to the Reaction of RAW264.7 Macrophages to Mechanical Strain. [PDF]

open access: yesMediators Inflamm
Schröder A   +8 more
europepmc   +1 more source

A Super‐Enhancer‐Driven Transcriptional Regulatory Circuit Underlying Abiraterone Resistance in Castration‐Resistant Prostate Cancer

open access: yesAdvanced Science, EarlyView.
This study identifies a super‐enhancer‐driven transcriptional regulatory circuit comprising BCL6, SMAD3, and NFIB that cooperate to drive cholesterol synthesis via SREBF2/HMGCR/FDFT1 activation and regulate CDK2/CCND3 for cell cycle control. Targeting this circuit with BI‐3802 or downstream inhibitors (Fatostatin/Lovastatin) overcomes abiraterone ...
Liling Jiang   +18 more
wiley   +1 more source

Regulation of Petal Coloration by the Auxin Amide Hydrolase Gene <i>RhILL1</i> in Rose (<i>Rosa hybrida</i>). [PDF]

open access: yesGenes (Basel)
Wang D   +10 more
europepmc   +1 more source

Home - About - Disclaimer - Privacy